-import random
-
def sigmoid(x):
import math
return 1 / (1 + math.exp(-x))
def d_sigmoid(x):
return sigmoid(x) * (1 - sigmoid(x))
-def result(inputs):
- end_node['inputs'] = inputs[:]
- s = 0
- for i in range(len(inputs)):
- s += inputs[i] * end_node['weights'][i]
- end_node['weighted_biased_input'] = s + end_node['bias']
- end_node['sigmoid_output'] = sigmoid(end_node['weighted_biased_input'])
- return end_node['sigmoid_output']
-
-def backprop(end_result, target, cost):
- d_cost_over_sigmoid_output = 2*(end_result - target)
- for i in range(len(end_node['weights'])):
- d_weighted_biased_input_over_weight = end_node['inputs'][i]
- d_sigmoid_output_over_weighted_biased_input = d_sigmoid(end_node['weighted_biased_input'])
- d_cost_over_weight = d_cost_over_sigmoid_output * d_sigmoid_output_over_weighted_biased_input * d_weighted_biased_input_over_weight
- end_node['weights'][i] -= d_cost_over_weight
- d_cost_over_bias = d_cost_over_sigmoid_output
- end_node['bias'] -= d_cost_over_bias
+class Node:
+
+ def __init__(self, size):
+ self.n_inputs = size
+ self.weights = [0] * self.n_inputs
+ self.bias = 0
+
+ def output(self, inputs):
+ self.inputs = inputs
+ weighted_inputs_sum = 0
+ for i in range(self.n_inputs):
+ weighted_inputs_sum += inputs[i] * self.weights[i]
+ self.weighted_biased_input = weighted_inputs_sum + self.bias
+ self.sigmoid_output = sigmoid(self.weighted_biased_input)
+ return self.sigmoid_output
+
+ def backprop(self, target):
+ d_cost_over_sigmoid_output = 2*(self.sigmoid_output - target)
+ for i in range(self.n_inputs):
+ d_weighted_biased_input_over_weight = self.inputs[i]
+ d_sigmoid_output_over_weighted_biased_input = d_sigmoid(self.weighted_biased_input)
+ d_cost_over_weight = d_cost_over_sigmoid_output * d_sigmoid_output_over_weighted_biased_input * d_weighted_biased_input_over_weight
+ self.weights[i] -= d_cost_over_weight
+ d_cost_over_bias = d_cost_over_sigmoid_output
+ self.bias -= d_cost_over_bias
+
+
+class TrainingUnit:
+
+ def __init__(self, inputs, target):
+ self.inputs = inputs
+ self.target = target
# identity
-training_set = [((0,), 0),
- ((1,), 1)]
+#training_set = [TrainingUnit((0,), 0),
+# TrainingUnit((1,), 1)]
# NOT
-#training_set = [((0,), 1),
-# ((1,), 0)]
+#training_set = [TrainingUnit((0,), 1),
+# TrainingUnit((1,), 0)]
# AND
-#training_set = [((0,0), 0),
-# ((1,0), 0),
-# ((0,1), 0),
-# ((1,1), 1)]
+#training_set = [TrainingUnit((0,0), 0),
+# TrainingUnit((1,0), 0),
+# TrainingUnit((0,1), 0),
+# TrainingUnit((1,1), 1)]
# OR
-#training_set = [((0,0), 0),
-# ((1,0), 1),
-# ((0,1), 1),
-# ((1,1), 1)]
+#training_set = [TrainingUnit((0,0), 0),
+# TrainingUnit((1,0), 1),
+# TrainingUnit((0,1), 1),
+# TrainingUnit((1,1), 1)]
# NOT (with one irrelevant column)
-#training_set = [((0,0), 1),
-# ((1,0), 0),
-# ((0,1), 1),
-# ((1,1), 0)]
+#training_set = [TrainingUnit((0,0), 0),
+# TrainingUnit((1,0), 1),
+# TrainingUnit((0,1), 0),
+# TrainingUnit((1,1), 1)]
-# XOR (will fail)
-#training_set = [((0,0), 0),
-# ((1,0), 1),
-# ((0,1), 1),
-# ((1,1), 0)]
+# XOR (will fail, as Minsky/Papert say)
+#training_set = [TrainingUnit((0,0), 0),
+# TrainingUnit((1,0), 1),
+# TrainingUnit((0,1), 1),
+# TrainingUnit((1,1), 0)]
# 1 if above f(x)=x line, else 0
-#training_set = [((0,1), 1),
-# ((2,3), 1),
-# ((1,1), 0),
-# ((2,2), 0)]
+training_set = [TrainingUnit((0,1), 1),
+ TrainingUnit((2,3), 1),
+ TrainingUnit((1,1), 0),
+ TrainingUnit((2,2), 0)]
# 1 if above f(x)=x**2, else 0 (will fail: no linear separability)
-#training_set = [((2,4), 0),
-# ((2,5), 1),
-# ((3,9), 0),
-# ((3,10), 1)]
+#training_set = [TrainingUnit((2,4), 0),
+# TrainingUnit((2,5), 1),
+# TrainingUnit((3,9), 0),
+# TrainingUnit((3,10), 1)]
-end_node = {'weights': [random.random() for i in range(len(training_set[0][0]))],
- 'bias': random.random()}
+end_node = Node(len(training_set[0].inputs))
n_training_runs = 100
for i in range(n_training_runs):
print()
- for element in training_set:
- inputs = element[0]
- target = element[1]
- result_ = result(inputs)
- cost = (result_ - target)**2
+ for unit in training_set:
+ result_ = end_node.output(unit.inputs)
+ cost = (result_ - unit.target)**2
+ formatted_inputs = []
+ for i in unit.inputs:
+ formatted_inputs += ['%2d' % i]
formatted_weights = []
- for w in end_node['weights']:
+ for w in end_node.weights:
formatted_weights += ['%1.3f' % w]
- print("inputs %s target %s result %0.9f cost %0.9f weights [%s] bias %1.3f" % (inputs, target, result_, cost, ','.join(formatted_weights), end_node['bias']))
- backprop(result_, target, cost)
+ print("inputs (%s) target %s result %0.9f cost %0.9f weights [%s] bias %1.3f" % (', '.join(formatted_inputs), unit.target, result_, cost, ', '.join(formatted_weights), end_node.bias))
+ end_node.backprop(unit.target)