X-Git-Url: https://plomlompom.com/repos/?a=blobdiff_plain;f=server_%2Fmap_.py;h=35d29c6b56da95fd2f25c4e35f4e85a3ff419da8;hb=77b74e4142ae2e8a3a5637af9856e26d86f8ec76;hp=444566d78cc82d33a11901216bb6c02d5fd9db58;hpb=6cb020dfca859185a4ad60a2bb236c2bb7c909c9;p=plomrogue2-experiments diff --git a/server_/map_.py b/server_/map_.py index 444566d..35d29c6 100644 --- a/server_/map_.py +++ b/server_/map_.py @@ -2,6 +2,7 @@ import sys sys.path.append('../') import game_common import server_.game +import math class Map(game_common.Map): @@ -11,7 +12,10 @@ class Map(game_common.Map): def __setitem__(self, yx, c): pos_i = self.get_position_index(yx) - self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:] + if type(c) == str: + self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:] + else: + self.terrain[pos_i] = c def __iter__(self): """Iterate over YX position coordinates.""" @@ -29,9 +33,9 @@ class Map(game_common.Map): yield (y, self.terrain[y * width:(y + 1) * width]) def get_fov_map(self, yx): - # TODO: Currently only have MapFovHex. Provide MapFovSquare. - fov_map_class = map_manager.get_map_class('Fov' + self.geometry) - return fov_map_class(self, yx) + fov_class_name = 'Fov' + self.__class__.__name__ + fov_class = globals()[fov_class_name] + return fov_class(self, yx) # The following is used nowhere, so not implemented. #def items(self): @@ -96,9 +100,9 @@ class MapHex(Map): def move_DOWNLEFT(self, start_pos): if start_pos[0] % 2 == 1: - return [start_pos[0] + 1, start_pos[1] - 1] + return [start_pos[0] + 1, start_pos[1] - 1] else: - return [start_pos[0] + 1, start_pos[1]] + return [start_pos[0] + 1, start_pos[1]] def move_DOWNRIGHT(self, start_pos): if start_pos[0] % 2 == 1: @@ -106,117 +110,186 @@ class MapHex(Map): else: return [start_pos[0] + 1, start_pos[1] + 1] + def get_neighbors(self, pos): + # DOWNLEFT, DOWNRIGHT, LEFT, RIGHT, UPLEFT, UPRIGHT (alphabetically) + neighbors = [None, None, None, None, None, None] # e, d, c, x, s, w + if pos[1] > 0: + neighbors[2] = [pos[0], pos[1] - 1] + if pos[1] < self.size[1] - 1: + neighbors[3] = [pos[0], pos[1] + 1] + # x, c, s, d, w, e # 3->0, 2->1, 5->4, 0->5 + if pos[0] % 2 == 1: + if pos[0] > 0 and pos[1] > 0: + neighbors[4] = [pos[0] - 1, pos[1] - 1] + if pos[0] < self.size[0] - 1 and pos[1] > 0: + neighbors[0] = [pos[0] + 1, pos[1] - 1] + if pos[0] > 0: + neighbors[5] = [pos[0] - 1, pos[1]] + if pos[0] < self.size[0] - 1: + neighbors[1] = [pos[0] + 1, pos[1]] + else: + if pos[0] > 0 and pos[1] < self.size[1] - 1: + neighbors[5] = [pos[0] - 1, pos[1] + 1] + if pos[0] < self.size[0] - 1 and pos[1] < self.size[1] - 1: + neighbors[1] = [pos[0] + 1, pos[1] + 1] + if pos[0] > 0: + neighbors[4] = [pos[0] - 1, pos[1]] + if pos[0] < self.size[0] - 1: + neighbors[0] = [pos[0] + 1, pos[1]] + return neighbors + + +class MapSquare(Map): + + # The following is used nowhere, so not implemented. + #def are_neighbors(self, pos_1, pos_2): + # return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1) + + def move_UP(self, start_pos): + return [start_pos[0] - 1, start_pos[1]] + + def move_DOWN(self, start_pos): + return [start_pos[0] + 1, start_pos[1]] -class MapFovHex(MapHex): + def get_neighbors(self, pos): + # DOWN, LEFT, RIGHT, UP (alphabetically) + neighbors = [None, None, None, None] + if pos[0] > 0: + neighbors[3] = [pos[0] - 1, pos[1]] + if pos[1] > 0: + neighbors[1] = [pos[0], pos[1] - 1] + if pos[0] < self.size[0] - 1: + neighbors[0] = [pos[0] + 1, pos[1]] + if pos[1] < self.size[1] - 1: + neighbors[2] = [pos[0], pos[1] + 1] + return neighbors + + +class FovMap: def __init__(self, source_map, yx): self.source_map = source_map self.size = self.source_map.size self.terrain = '?' * self.size_i self[yx] = '.' - self.shadow_angles = [] + self.shadow_cones = [] self.circle_out(yx, self.shadow_process_hex) - def shadow_process_hex(self, yx, distance_to_center, dir_i, hex_i): - # TODO: If no shadow_angles yet and self[yx] == '.', skip all. + def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress): + # Possible optimization: If no shadow_cones yet and self[yx] == '.', + # skip all. CIRCLE = 360 # Since we'll float anyways, number is actually arbitrary. - def correct_angle(angle): - if angle < 0: - angle += CIRCLE - return angle + def correct_arm(arm): + if arm < 0: + arm += CIRCLE + return arm - def under_shadow_angle(new_angle): - for old_angle in self.shadow_angles: - if old_angle[0] >= new_angle[0] and \ - new_angle[1] >= old_angle[1]: - #print('DEBUG shadowed by:', old_angle) + def in_shadow_cone(new_cone): + for old_cone in self.shadow_cones: + if old_cone[0] >= new_cone[0] and \ + new_cone[1] >= old_cone[1]: + #print('DEBUG shadowed by:', old_cone) return True + # We might want to also shade hexes whose middle arm is inside a + # shadow cone for a darker FOV. Note that we then could not for + # optimization purposes rely anymore on the assumption that a + # shaded hex cannot add growth to existing shadow cones. return False - def merge_angle(new_angle): - for old_angle in self.shadow_angles: - if new_angle[0] > old_angle[0] and \ - new_angle[1] <= old_angle[0]: - #print('DEBUG merging to', old_angle) - old_angle[0] = new_angle[0] - #print('DEBUG merged angle:', old_angle) + def merge_cone(new_cone): + for old_cone in self.shadow_cones: + if new_cone[0] > old_cone[0] and \ + (new_cone[1] < old_cone[0] or + math.isclose(new_cone[1], old_cone[0])): + #print('DEBUG merging to', old_cone) + old_cone[0] = new_cone[0] + #print('DEBUG merged cone:', old_cone) return True - if new_angle[1] < old_angle[1] and \ - new_angle[0] >= old_angle[1]: - #print('DEBUG merging to', old_angle) - old_angle[1] = new_angle[1] - #print('DEBUG merged angle:', old_angle) + if new_cone[1] < old_cone[1] and \ + (new_cone[0] > old_cone[1] or + math.isclose(new_cone[0], old_cone[1])): + #print('DEBUG merging to', old_cone) + old_cone[1] = new_cone[1] + #print('DEBUG merged cone:', old_cone) return True return False - def eval_angle(angle): - new_angle = [left_angle, right_angle] - #print('DEBUG ANGLE', angle, '(', step_size, distance_to_center, number_steps, ')') - if under_shadow_angle(angle): + def eval_cone(cone): + #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')') + if in_shadow_cone(cone): return self[yx] = '.' if self.source_map[yx] != '.': - #print('DEBUG throws shadow', angle) + #print('DEBUG throws shadow', cone) unmerged = True - while merge_angle(angle): + while merge_cone(cone): unmerged = False if unmerged: - self.shadow_angles += [angle] + self.shadow_cones += [cone] #print('DEBUG', yx) - step_size = (CIRCLE/6)/distance_to_center - number_steps = dir_i * distance_to_center + hex_i - left_angle = correct_angle(-(step_size/2) - step_size*number_steps) - right_angle = correct_angle(left_angle - step_size) - # TODO: derive left_angle from prev right_angle where possible - if right_angle > left_angle: - eval_angle([left_angle, 0]) - eval_angle([CIRCLE, right_angle]) + step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center + number_steps = dir_i * distance_to_center + dir_progress + left_arm = correct_arm(-(step_size/2) - step_size*number_steps) + right_arm = correct_arm(left_arm - step_size) + # Optimization potential: left cone could be derived from previous + # right cone. Better even: Precalculate all cones. + if right_arm > left_arm: + eval_cone([left_arm, 0]) + eval_cone([CIRCLE, right_arm]) else: - eval_angle([left_angle, right_angle]) + eval_cone([left_arm, right_arm]) - def circle_out(self, yx, f): + def basic_circle_out_move(self, pos, direction): + """Move position pos into direction. Return whether still in map.""" + mover = getattr(self, 'move_' + direction) + pos[:] = mover(pos) + if pos[0] < 0 or pos[1] < 0 or \ + pos[0] >= self.size[0] or pos[1] >= self.size[1]: + return False + return True - def move(pos, direction): - """Move position pos into direction. Return whether still in map.""" - mover = getattr(self, 'move_' + direction) - pos[:] = mover(pos) - if pos[0] < 0 or pos[1] < 0 or \ - pos[0] >= self.size[0] or pos[1] >= self.size[1]: - return False - return True + def circle_out(self, yx, f): + # Optimization potential: Precalculate movement positions. (How to check + # circle_in_map then?) + # Optimization potential: Precalculate what hexes are shaded by what hex + # and skip evaluation of already shaded hexes. (This only works if hex + # shading implies they completely lie in existing shades; otherwise we + # would lose shade growth through hexes at shade borders.) # TODO: Start circling only in earliest obstacle distance. - directions = ('DOWNLEFT', 'LEFT', 'UPLEFT', 'UPRIGHT', 'RIGHT', 'DOWNRIGHT') circle_in_map = True distance = 1 - first_direction = 'RIGHT' yx = yx[:] #print('DEBUG CIRCLE_OUT', yx) while circle_in_map: circle_in_map = False - move(yx, 'RIGHT') - for dir_i in range(len(directions)): - for hex_i in range(distance): - direction = directions[dir_i] - if move(yx, direction): - f(yx, distance, dir_i, hex_i) + self.basic_circle_out_move(yx, 'RIGHT') + for dir_i in range(len(self.circle_out_directions)): + for dir_progress in range(distance): + direction = self.circle_out_directions[dir_i] + if self.circle_out_move(yx, direction): + f(yx, distance, dir_i, dir_progress) circle_in_map = True distance += 1 -class MapSquare(Map): +class FovMapHex(FovMap, MapHex): + circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT', + 'UPRIGHT', 'RIGHT', 'DOWNRIGHT') - # The following is used nowhere, so not implemented. - #def are_neighbors(self, pos_1, pos_2): - # return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1) + def circle_out_move(self, yx, direction): + return self.basic_circle_out_move(yx, direction) - def move_UP(self, start_pos): - return [start_pos[0] - 1, start_pos[1]] - def move_DOWN(self, start_pos): - return [start_pos[0] + 1, start_pos[1]] +class FovMapSquare(FovMap, MapSquare): + circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'), + ('UP', 'RIGHT'), ('RIGHT', 'DOWN')) + + def circle_out_move(self, yx, direction): + self.basic_circle_out_move(yx, direction[0]) + return self.basic_circle_out_move(yx, direction[1]) -map_manager = game_common.MapManager(globals()) +map_manager = game_common.MapManager((MapHex, MapSquare))