X-Git-Url: https://plomlompom.com/repos/?a=blobdiff_plain;f=src%2Fserver%2Fai.c;h=749a3858afaa4078e9fa0357e9f4cbfde9f1958c;hb=c7b477308d8db32911f3076169379f2932847ed9;hp=75b4b89fc350b45d26da319a9f0046c71a24afa4;hpb=e2f7f39d5d52702f0b0b9dfdcf5867be325e7572;p=plomrogue diff --git a/src/server/ai.c b/src/server/ai.c index 75b4b89..749a385 100644 --- a/src/server/ai.c +++ b/src/server/ai.c @@ -1,167 +1,486 @@ -/* src/server/ai.c */ +/* src/server/ai.c + * + * This file is part of PlomRogue. PlomRogue is licensed under the GPL version 3 + * or any later version. For details on its copyright, license, and warranties, + * see the file NOTICE in the root directory of the PlomRogue source package. + */ #include "ai.h" -#include /* uint8_t, uint32_t, UINT8_MAX */ -#include /* strlen(), memset() */ -#include "../common/yx_uint16.h" /* struct yx_uint16 */ -#include "map_object_actions.h" /* get_moa_id_by_name() */ -#include "map_objects.h" /* struct MapObj */ -#include "world.h" /* global world */ - - - -/* Write into "neighbor_scores" scores for immediate neighbors to cell at - * "pos_yx" (YX coordinates) and "pos_i" (arry_index) in "score_map". Directions - * determining neighborhood are defined by the letters of "dir"; their order - * also determines in what order scores are written into "neighbor_score". - * "len_dirs" is to store the result of a previous strlen(dir) (so it does not - * have to be called repeatedly and costly in dijkstra_map(); same reason for - * "pos_i"'s redundancy.). "max_score" is written into "neighbor_scores" for - * illegal directions (that from "pos_yx" would lead beyond the map's border). +#include /* uint8_t, uint16_t, uint32_t, int16_t, UINT16_MAX */ +#include /* free() */ +#include "../common/try_malloc.h" /* try_malloc() */ +#include "hardcoded_strings.h" /* s */ +#include "rrand.h" /* rrand() */ +#include "thing_actions.h" /* get_thing_action_id_by_name() */ +#include "things.h" /* Thing, ThingType, ThingInMemory, get_thing_type() */ +#include "world.h" /* world */ + +#define N_DIRS 6 + + + +/* Return "score_map"["pos"] unless "check_inhabitant" and cell is inhabited. */ +static uint16_t set_neighbor_val(uint16_t * score_map, uint8_t check_inhabitant, + uint16_t kill_score, uint16_t pos); + +/* Write into "neighbors" scores of the N_DIRS immediate neighbors of the + * "score_map" cell at "pos_i" (array index), as found in the directions + * north-east, east, south-east etc. (clockwise order). Use "kill_score" for + * illegal neighborhoods (i.e. if direction would lead beyond the map's border, + * or, if "check_inhabitants" is non-zero, into animate-inhabited cell). */ -static void get_neighbor_scores(char * dirs, uint8_t len_dirs, - uint8_t * score_map, struct yx_uint16 pos_yx, - uint32_t pos_i, uint8_t max_score, - uint8_t * neighbor_scores); - -/* Iterate over scored cells in "score_map" of world.map's 2D geometry. Compare - * each cell's score against the scores of its immediate neighbors in "dirs" - * directions; if at least one of these is lower, re-set the current cell's - * score to one higher than its lowest neighbor score. Repeat this whole process - * until all cells have settled on their final score. Ignore cells whose - * position in "score_map" fits a non-island cell in world.map.cells. Expect +static void get_neighbor_scores(uint16_t * score_map, uint16_t pos_i, + uint16_t kill_score, uint16_t * neighbors, + uint8_t check_inhabitants); + +/* Iterate over scored cells in "score_map" of world.map's geometry. Compare + * each cell's score against the score of its immediate neighbors in N_DIRS + * directions. If any neighbor's score is at least two points lower than the + * current cell's score, re-set it to 1 point higher than its lowest-scored + * neighbor. Repeat this whole process until all cells have settled on their + * final score. Ignore cells whose score is greater than "max_score". Expect * "max_score" to be the maximum score for cells, marking them as unreachable. */ -static void dijkstra_map(char * dirs, uint8_t * score_map, uint8_t max_score); +static void dijkstra_map(uint16_t * score_map, uint16_t max_score); + +/* Helpers to init_score_map(), realizing individual filters. */ +static uint8_t score_map_filter_attack(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye); +static uint8_t score_map_filter_flee(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye); +static uint8_t score_map_filter_consume(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye); +static uint8_t score_map_filter_search(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye); + +/* get_dir_to_nearest_target() helper: Prepare "score_map" for dijkstra_map(). */ +static void init_score_map(char filter, uint16_t * score_map, uint32_t map_size, + struct Thing * t_eye); + +/* From "targets" select random "cmp" match as directory by order in "dirs". */ +static char rand_target_dir(char * dirs, uint16_t cmp, uint16_t * targets); + +/* Helper to get_dir_to_nearest_target(). */ +static char get_dir_from_neighbors(char filter, struct Thing * t_eye, + uint16_t * score_map); + +/* Set (if possible) as "t_eye"'s command a move to the path to the path-wise + * nearest target that is not "t_eye" and fits criteria set by "filter". On + * success, return !0, else 0. Values for "filter": + * "a": thing in FOV is below a certain distance, animate, but of a type that is + * not "t_eye"'s, and starts out weaker than it is; build path as avoiding + * things of "t_eye"'s type + * "f": neighbor cell (not inhabited by any animate thing) further away from + * animate thing not further than x steps away and in FOV and of a type + * that is not "t_eye"'s, and starts out stronger or as strong as "t_eye" + * is currently; or (cornered), if no such flight cell, but thing of above + * criteria is too near, a cell closer to it, or, if less near, just wait + * "c": thing in memorized map is consumable + * "s": memory map cell with greatest-reachable degree of unexploredness + */ +static uint8_t get_dir_to_nearest_target(struct Thing * t_eye, char filter); -/* Return char of direction ("N", "E", "S" or "W") of enemy with the shortest - * path to "mo_target". If no enemy is around, return 0. +/* Return 1 if any thing not "t_eye" is known and fulfills some criteria defined + * by "filter", else 0. Values for "filter": + * "a" or "f": thing in FOV is animate, but of type that not that of "t_eye", + * and starts out weaker ("a") / stronger ("f") than "t_eye" is + * "c" : thing in memorized map is consumable */ -static char get_dir_to_nearest_enemy(struct MapObj * mo_target); +static uint8_t seeing_thing(struct Thing * t_eye, char filter); + +/* Return slot ID of strongest consumable in "t_owner"'s inventory, else -1. */ +static int16_t get_inventory_slot_to_consume(struct Thing * t_owner); + +/* Return 1 if "t_standing" is standing on a consumable, else 0. */ +static uint8_t standing_on_consumable(struct Thing * t_standing); + + + +static uint16_t set_neighbor_val(uint16_t * score_map, uint8_t check_inhabitant, + uint16_t kill_score, uint16_t pos) +{ + if (check_inhabitant) + { + struct Thing * t = world.things; + for (; t; t = t->next) + { + if (t->lifepoints && pos == t->pos.y * world.map.length + t->pos.x) + { + return kill_score; + } + } + } + return score_map[pos]; +} + + + +static void get_neighbor_scores(uint16_t * score_map, uint16_t pos_i, + uint16_t kill_score, uint16_t * neighbors, + uint8_t check_inhabitants) +{ + uint32_t map_size = world.map.length * world.map.length; + uint8_t open_north = pos_i >= world.map.length; + uint8_t open_east = pos_i + 1 % world.map.length; + uint8_t open_south = pos_i + world.map.length < map_size; + uint8_t open_west = pos_i % world.map.length; + uint8_t is_indented = (pos_i / world.map.length) % 2; + uint8_t open_diag_west = is_indented || open_west; + uint8_t open_diag_east = !is_indented || open_east; + neighbors[0] = !(open_north && open_diag_east) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i - world.map.length + is_indented); + neighbors[1] = !(open_east) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i + 1); + neighbors[2] = !(open_south && open_diag_east) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i + world.map.length + is_indented); + neighbors[3] = !(open_south && open_diag_west) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i + world.map.length - !is_indented); + neighbors[4] = !(open_west) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i - 1); + neighbors[5] = !(open_north && open_diag_west) ? kill_score : + set_neighbor_val(score_map, check_inhabitants, kill_score, + pos_i - world.map.length - !is_indented); +} -static void get_neighbor_scores(char * dirs, uint8_t len_dirs, - uint8_t * score_map, struct yx_uint16 pos_yx, - uint32_t pos_i, uint8_t max_score, - uint8_t * neighbor_scores) +static void dijkstra_map(uint16_t * score_map, uint16_t max_score) { - memset(neighbor_scores, max_score, len_dirs); + uint32_t map_size = world.map.length * world.map.length; + uint32_t pos; + uint16_t i_scans, neighbors[N_DIRS], min_neighbor; + uint8_t scores_still_changing = 1; uint8_t i_dirs; - for (i_dirs = 0; i_dirs < len_dirs; i_dirs++) + for (i_scans = 0; scores_still_changing; i_scans++) { - if ('N' == dirs[i_dirs] && pos_yx.y > 0) + scores_still_changing = 0; + for (pos = 0; pos < map_size; pos++) { - neighbor_scores[i_dirs] = score_map[pos_i - world.map.size.x]; + if (score_map[pos] <= max_score) + { + get_neighbor_scores(score_map, pos, max_score, neighbors, 0); + min_neighbor = max_score; + for (i_dirs = 0; i_dirs < N_DIRS; i_dirs++) + { + if (min_neighbor > neighbors[i_dirs]) + { + min_neighbor = neighbors[i_dirs]; + } + } + if (score_map[pos] > min_neighbor + 1) + { + score_map[pos] = min_neighbor + 1; + scores_still_changing = 1; + } + } } - else if ('E' == dirs[i_dirs] && pos_yx.x < world.map.size.x - 1) + } +} + + + +static uint8_t score_map_filter_attack(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye) +{ + if ('a' != filter) + { + return 0; + } + struct Thing * t = world.things; + for (; t; t = t->next) + { + if ( t != t_eye && t->lifepoints && t->type != t_eye->type + && 'v' == t_eye->fov_map[t->pos.y*world.map.length + t->pos.x] + && get_thing_type(t->type)->lifepoints < t_eye->lifepoints) { - neighbor_scores[i_dirs] = score_map[pos_i + 1]; + score_map[t->pos.y * world.map.length + t->pos.x] = 0; } - else if ('S' == dirs[i_dirs] && pos_yx.y < world.map.size.y - 1) + else if (t->type == t_eye->type) { - neighbor_scores[i_dirs] = score_map[pos_i + world.map.size.x]; + score_map[t->pos.y * world.map.length + t->pos.x] = UINT16_MAX; } - else if ('W' == dirs[i_dirs] && pos_yx.x > 0) + } + return 1; +} + + + +static uint8_t score_map_filter_flee(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye) +{ + if ('f' != filter) + { + return 0; + } + struct Thing * t = world.things; + for (; t; t = t->next) + { + if ( t->lifepoints && t->type != t_eye->type + && 'v' == t_eye->fov_map[t->pos.y*world.map.length + t->pos.x] + && get_thing_type(t->type)->lifepoints >= t_eye->lifepoints) { - neighbor_scores[i_dirs] = score_map[pos_i - 1]; + score_map[t->pos.y * world.map.length + t->pos.x] = 0; } } + return 1; } -static void dijkstra_map(char * dirs, uint8_t * score_map, uint8_t max_score) +static uint8_t score_map_filter_consume(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye) { - uint8_t len_dirs = strlen(dirs); - uint8_t neighbor_scores[len_dirs]; - struct yx_uint16 pos_yx; - uint32_t pos_i; - uint8_t i_scans, i_dirs, local_score, min_neighbor_score; - uint8_t scores_still_changing = 1; - for (i_scans = 0; scores_still_changing; i_scans++) + if ('c' != filter) { - scores_still_changing = 0; - for (pos_yx.y = 0, pos_i = 0; pos_yx.y < world.map.size.y; pos_yx.y++) + return 0; + } + struct ThingInMemory * tm = t_eye->t_mem; + for (; tm; tm = tm->next) + { + if ( ' ' != t_eye->mem_map[tm->pos.y * world.map.length + tm->pos.x] + && get_thing_type(tm->type)->consumable) + { + score_map[tm->pos.y * world.map.length + tm->pos.x] = 0; + } + } + return 1; +} + + + +static uint8_t score_map_filter_search(uint8_t filter, uint16_t * score_map, + struct Thing * t_eye) +{ + if (!(('0' < filter && '9' >= filter) || ' ' == filter)) + { + return 0; + } + uint32_t i; + for (i = 0; i < (uint32_t) (world.map.length * world.map.length); i++) + { + score_map[i] = filter == t_eye->mem_depth_map[i] ? 0 : score_map[i]; + } + return 1; +} + + + +static void init_score_map(char filter, uint16_t * score_map, uint32_t map_size, + struct Thing * t_eye) +{ + uint32_t i; + for (i = 0; i < map_size; i++) + { + score_map[i] = UINT16_MAX; + if ('.' == t_eye->mem_map[i]) + { + score_map[i] = UINT16_MAX-1; + } + } + if ( score_map_filter_attack(filter, score_map, t_eye) + || score_map_filter_flee(filter, score_map, t_eye) + || score_map_filter_consume(filter, score_map, t_eye) + || score_map_filter_search(filter, score_map, t_eye)) + { + } +} + + +static char rand_target_dir(char * dirs, uint16_t cmp, uint16_t * targets) +{ + char candidates[N_DIRS]; + uint8_t n_candidates = 0; + uint8_t i; + for (i = 0; i < N_DIRS; i++) + { + if (cmp == targets[i]) + { + candidates[n_candidates] = dirs[i]; + n_candidates++; + } + } + return n_candidates ? candidates[rrand() % n_candidates] : 0; +} + + + +static char get_dir_from_neighbors(char filter, struct Thing * t_eye, + uint16_t * score_map) +{ + char dir_to_nearest_target = 0; + uint16_t pos_i = (t_eye->pos.y * world.map.length) + t_eye->pos.x; + char * dirs = "edcxsw"; /* get_neighbor_scores()'s clockwise dir order. */ + uint16_t neighbors[N_DIRS]; + get_neighbor_scores(score_map, pos_i, UINT16_MAX, neighbors, 'f'==filter); + uint16_t minmax_start = 'f' == filter ? 0 : UINT16_MAX-1; + uint16_t minmax_neighbor = minmax_start; + uint8_t i; + for (i = 0; i < N_DIRS; i++) + { + if ( ( 'f' == filter && score_map[pos_i] < neighbors[i] + && minmax_neighbor < neighbors[i] && UINT16_MAX != neighbors[i]) + || ('f' != filter && minmax_neighbor > neighbors[i])) + { + minmax_neighbor = neighbors[i]; + } + } + if (minmax_neighbor != minmax_start) + { + dir_to_nearest_target = rand_target_dir(dirs,minmax_neighbor,neighbors); + } + if ('f' == filter) + { + if (!dir_to_nearest_target) { - for (pos_yx.x = 0; pos_yx.x < world.map.size.x; pos_yx.x++, pos_i++) + if (1 == score_map[pos_i]) /* Attack if cornered too closely. */ + { + dir_to_nearest_target = rand_target_dir(dirs, 0, neighbors); + } + else if (3 >= score_map[pos_i]) /* If less closely, just wait. */ { - if ('.' == world.map.cells[pos_i]) + t_eye->command = get_thing_action_id_by_name(s[S_CMD_WAIT]); + return 1; + } + } + else if (dir_to_nearest_target && 3 < score_map[pos_i]) /* Don't flee */ + { /* enemy of */ + dir_to_nearest_target = 0; /* a certain */ + } /* distance. */ + } + else if ('a' == filter && 10 <= score_map[pos_i]) + { + dir_to_nearest_target = 0; + } + return dir_to_nearest_target; +} + + + +static uint8_t get_dir_to_nearest_target(struct Thing * t_eye, char filter) +{ + char dir_to_nearest_target = 0; + uint8_t mem_depth_char = ' '; + uint8_t run_i = 's' == filter ? 9 /* max explored mem depth age */ + 1 : 1; + while ( run_i && !dir_to_nearest_target + && ('s' == filter || seeing_thing(t_eye, filter))) + { + run_i--; + uint32_t map_size = world.map.length * world.map.length; + uint16_t * score_map = try_malloc(map_size * sizeof(uint16_t),__func__); + init_score_map('s' == filter ? mem_depth_char : filter, + score_map, map_size, t_eye); + mem_depth_char = ' ' == mem_depth_char ? '9' : mem_depth_char - 1; + dijkstra_map(score_map, UINT16_MAX-1); + dir_to_nearest_target = get_dir_from_neighbors(filter,t_eye,score_map); + free(score_map); + if (dir_to_nearest_target && 1 != dir_to_nearest_target) + { + t_eye->command = get_thing_action_id_by_name(s[S_CMD_MOVE]); + t_eye->arg = dir_to_nearest_target; + } + } + return dir_to_nearest_target; +} + + + +static uint8_t seeing_thing(struct Thing * t_eye, char filter) +{ + if (t_eye->fov_map && ('a' == filter || 'f' == filter)) + { + struct Thing * t = world.things; + for (; t; t = t->next) + { + if ( t != t_eye && t->lifepoints && t->type != t_eye->type + && 'v' == t_eye->fov_map[t->pos.y*world.map.length + t->pos.x]) + { + struct ThingType * tt = get_thing_type(t->type); + if ( ('f' == filter && tt->lifepoints >= t_eye->lifepoints) + || ('a' == filter && tt->lifepoints < t_eye->lifepoints)) { - local_score = score_map[pos_i]; - get_neighbor_scores(dirs, len_dirs, score_map, pos_yx, - pos_i, max_score, neighbor_scores); - min_neighbor_score = max_score; - for (i_dirs = 0; i_dirs < len_dirs; i_dirs++) - { - if (min_neighbor_score > neighbor_scores[i_dirs]) - { - min_neighbor_score = neighbor_scores[i_dirs]; - } - } - if (local_score > min_neighbor_score + 1) - { - score_map[pos_i] = min_neighbor_score + 1; - scores_still_changing = 1; - } + return 1; } } } } + else if (t_eye->mem_map && 'c' == filter) + { + struct ThingInMemory * tm = t_eye->t_mem; + for (; tm; tm = tm->next) + { + if ( ' ' != t_eye->mem_map[tm->pos.y*world.map.length+tm->pos.x] + && get_thing_type(tm->type)->consumable) + { + return 1; + } + } + } + return 0; } -static char get_dir_to_nearest_enemy(struct MapObj * mo_target) +static int16_t get_inventory_slot_to_consume(struct Thing * t_owner) { - /* Calculate for each cell the distance to the nearest map actor that is - * not "mo_target", with movement only possible in the directions of "dir". - * (Actor's own cells start with a distance of 0 towards themselves.) - */ - uint8_t max_score = UINT8_MAX; /* Score for cells treated as unreachable. */ - char * dirs = "NESW"; - uint8_t score_map[world.map.size.y * world.map.size.x]; - memset(score_map, max_score, world.map.size.y * world.map.size.x); - struct MapObj * mo = world.map_objs; - for (; mo != NULL; mo = mo->next) - { - if (!mo->lifepoints || mo == mo_target) - { - continue; - } - score_map[(mo->pos.y * world.map.size.x) + mo->pos.x] = 0; - } - dijkstra_map(dirs, score_map, max_score); - - /* Return direction of "mo_target"'s lowest-scored neighbor cell. */ - uint8_t len_dirs = strlen(dirs); - uint32_t pos_i = (mo_target->pos.y * world.map.size.x) + mo_target->pos.x; - uint8_t neighbor_scores[len_dirs]; - get_neighbor_scores(dirs, len_dirs, score_map, mo_target->pos, pos_i, - max_score, neighbor_scores); - char dir_to_nearest_enemy = 0; - uint8_t min_neighbor_score = max_score; - uint8_t i_dirs; - for (i_dirs = 0; i_dirs < len_dirs; i_dirs++) + uint8_t compare_consumability = 0; + int16_t selection = -1; + struct Thing * t = t_owner->owns;; + uint8_t i; + for (i = 0; t; t = t->next, i++) { - if (min_neighbor_score > neighbor_scores[i_dirs]) + struct ThingType * tt = get_thing_type(t->type); + if (tt->consumable > compare_consumability) { - min_neighbor_score = neighbor_scores[i_dirs]; - dir_to_nearest_enemy = dirs[i_dirs]; + compare_consumability = tt->consumable; + selection = i; } } - return dir_to_nearest_enemy; + return selection; } -extern void ai(struct MapObj * mo) +static uint8_t standing_on_consumable(struct Thing * t_standing) { - mo->command = get_moa_id_by_name("wait"); - char sel = get_dir_to_nearest_enemy(mo); - if (0 != sel) + struct Thing * t = world.things; + for (; t; t = t->next) { - mo->command = get_moa_id_by_name("move"); - mo->arg = sel; + if ( t != t_standing + && t->pos.y == t_standing->pos.y && t->pos.x == t_standing->pos.x + && get_thing_type(t->type)->consumable) + { + return 1; + } + } + return 0; +} + + + +extern void ai(struct Thing * t) +{ + t->command = get_thing_action_id_by_name(s[S_CMD_WAIT]); + if (!get_dir_to_nearest_target(t, 'f')) + { + int16_t sel = get_inventory_slot_to_consume(t); + if (-1 != sel) + { + t->command = get_thing_action_id_by_name(s[S_CMD_USE]); + t->arg = (uint8_t) sel; + } + else if (standing_on_consumable(t)) + { + t->command = get_thing_action_id_by_name(s[S_CMD_PICKUP]); + } + else if ( !get_dir_to_nearest_target(t, 'c') + && !get_dir_to_nearest_target(t, 'a')) + { + get_dir_to_nearest_target(t, 's'); + } } }