1 /* src/server/field_of_view.c */
3 #define _POSIX_C_SOURCE 200809L /* strdup() */
4 #include "field_of_view.h"
5 #include <stdlib.h> /* free() */
6 #include <stdint.h> /* uint8_t, uint16_t, uint32_t */
7 #include <string.h> /* memset(), strchr(), strdup() */
8 #include "../common/rexit.h" /* exit_trouble() */
9 #include "../common/try_malloc.h" /* try_malloc() */
10 #include "map.h" /* yx_to_map_pos() */
11 #include "things.h" /* Thing */
12 #include "yx_uint8.h" /* yx_uint8 */
13 #include "world.h" /* global world */
17 /* Values for mv_yx_in_dir_wrap()'s wrapping directory memory. */
26 /* Move "yx" into hex direction "d". If this moves "yx" beyond the minimal (0)
27 * or maximal (UINT8_MAX) column or row, it wraps to the opposite side. Such
28 * wrapping is returned as a wraps enum value and stored, so that further calls
29 * to move "yx" back into the opposite direction may unwrap it again. Pass an
30 * "unwrap" of UNWRAP to re-set the internal wrap memory to 0.
32 static uint8_t mv_yx_in_dir_wrap(char d, struct yx_uint8 * yx, uint8_t unwrap);
34 /* Wrapper to "mv_yx_in_dir_wrap()", returns 1 if the wrapped function moved
35 * "yx" within the wrap borders and the map size, else 0.
37 extern uint8_t mv_yx_in_dir_legal(char dir, struct yx_uint8 * yx);
39 /* Return one by one hex dir characters of walking through a circle of "radius".
40 * The circle is initialized by passing a "new_circle" of 1 and the "radius"
41 * and only returns non-null hex direction characters if "new_circle" is 0.
43 static char next_circle_dir(uint8_t new_circle, uint8_t radius_new);
45 /* Draw circle of hexes flagged LIMIT "radius" away from "yx" to "fov_map". */
46 extern void draw_border_circle(struct yx_uint8 yx, uint8_t radius,
49 /* eye_to_cell_dir_ratio() helper. */
50 static void geometry_to_char_ratio(uint8_t * n1, uint8_t * n2, uint8_t indent,
51 int16_t diff_y, int16_t diff_x,
52 uint8_t vertical, uint8_t variant);
54 /* From the chars in "available_dirs" and the geometry described by the other
55 * parameters return a string of hex direction characters representing the
56 * approximation of a straight line. "variant" marks the direction as either in
57 * the northern, north-eastern or south-western hex neighborhood if 1, or the
60 static char * eye_to_cell_dir_ratio(char * available_dirs, uint8_t indent,
61 int16_t diff_y, int16_t diff_x,
62 uint8_t vertical, uint8_t variant,
65 /* Return string approximating in one or two hex direction chars the direction
66 * that a "diff_y" and "diff_x" lead to in the internal half-indented 2D
67 * encoding of hexagonal maps, with "indent" the movement's start indentation.
69 static char * dir_from_delta(uint8_t indent, int16_t diff_y, int16_t diff_x);
71 /* Return string of hex movement direction characters describing the best
72 * possible hex approximation to a straight line from "yx_eye" to "yx_cell". If
73 * "right" is set and the string is of length two, return it with the direction
74 * strings scarcer character appearing first.
76 static char * eye_to_cell(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_cell,
79 /* Return string of hex movement direction characters describing the best
80 * possible hex approximation to a straight line from "yx_eye" to "yx_cell". If
81 * "right" is set and the string is of length two, return it with the direction
82 * strings scarcer character appearing first.
84 static char * eye_to_cell(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_cell,
87 /* fill_shadow() helper, determining if map's top left cell starts a shadow. */
88 static uint8_t is_top_left_shaded(uint16_t pos_a, uint16_t pos_b,
91 /* Flag as HIDDEN all cells in "fov_map" that are enclosed by 1) the map's
92 * borders or cells flagged LIMIT and 2) the shadow arms of cells flagged
93 * SHADOW_LEFT and SHADOW_RIGHT extending from "yx_cell", as seen as left and
94 * right as seen from "yx_eye". "pos_a" and "pos_b" store the terminal positions
95 * of these arms in "fov_map" ("pos_a" for the left, "pos_b" for the right one).
97 static void fill_shadow(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_cell,
98 uint8_t * fov_map, uint16_t pos_a, uint16_t pos_b);
100 /* Flag with "flag" cells of a path from "yx_start" to the end of the map or (if
101 * closer) the view border circle of the cells flagged as LIMIT, in a direction
102 * parallel to the one determined by walking a path from "yx_eye" to the cell
103 * reachable by moving one step into "dir" from "yx_start". If "shift_right" is
104 * set, choose among the possible paths the one whose starting cell is set most
105 * to the right, else do the opposite.
107 static uint16_t shadow_arm(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_start,
108 uint8_t * fov_map, char dir, uint8_t flag,
109 uint8_t shift_right);
111 /* From "yx_start", draw shadow of what is invisible as seen from "yx_eye" into
112 * "fov_map" by extending shadow arms from "yx_start" as shadow borders until
113 * the edges of the map or, if smaller, the maximum viewing distance, flag these
114 * shadow arms' cells as HIDE_LATER and the area enclosed by them as HIDDEN.
115 * "dir_left" and "dir_right" are hex directions to move to from "yx_start" for
116 * cells whose shortest straight path to "yx_eye" serve as the lines of sight
117 * enclosing the shadow left and right (left and right as seen from "yx_eye").
119 static void shadow(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_start,
120 uint8_t * fov_map, char dir_left, char dir_right);
122 /* In "fov_map", if cell of position "yx_cell" is not HIDDEN, set it as VISIBLE,
123 * and if an obstacle to view is positioned there in the game map, flag cells
124 *behind it, unseen from "yx_eye", as HIDDEN on the interior and HIDE_LATER on
127 * The shape and width of shadows is determined by 1) calculating an approximate
128 * direction of "yx_cell" as seen from "yx_eye" as one hex movement direction,
129 * or two directly neighboring each other (i.e. "east", "east and north-east"),
130 * 2) deriving the two hex movement directions clockwise immediately preceding
131 * the first (or only) direction and immediately succeeding the second (or only)
132 * one and 3) passing the two directions thus gained as shadow arm direction
133 * calibration values to shadow() (after this function's other arguments).
135 static void set_view_of_cell_and_shadows(struct yx_uint8 * yx_cell,
136 struct yx_uint8 * yx_eye,
141 static uint8_t mv_yx_in_dir_wrap(char d, struct yx_uint8 * yx, uint8_t unwrap)
143 static uint8_t wrap = 0;
149 struct yx_uint8 original;
154 yx->x = yx->x + (yx->y % 2);
163 yx->x = yx->x + (yx->y % 2);
168 yx->x = yx->x - !(yx->y % 2);
177 yx->x = yx->x - !(yx->y % 2);
182 exit_trouble(1, "mv_yx_in_dir_wrap()", "illegal direction");
184 if (strchr("edc", d) && yx->x < original.x)
186 wrap = wrap & WRAP_W ? wrap ^ WRAP_W : wrap | WRAP_E;
188 else if (strchr("xsw", d) && yx->x > original.x)
190 wrap = wrap & WRAP_E ? wrap ^ WRAP_E : wrap | WRAP_W;
192 if (strchr("we", d) && yx->y > original.y)
194 wrap = wrap & WRAP_S ? wrap ^ WRAP_S : wrap | WRAP_N;
196 else if (strchr("xc", d) && yx->y < original.y)
198 wrap = wrap & WRAP_N ? wrap ^ WRAP_N : wrap | WRAP_S;
205 extern uint8_t mv_yx_in_dir_legal(char dir, struct yx_uint8 * yx)
207 uint8_t wraptest = mv_yx_in_dir_wrap(dir, yx, 0);
208 if (!wraptest && yx->x < world.map.length && yx->y < world.map.length)
217 static char next_circle_dir(uint8_t new_circle, uint8_t radius_new)
219 static uint8_t i_dirs = 0;
220 static uint8_t i_dist = 0;
221 static uint8_t radius = 0;
222 char * dirs = "dcxswe";
230 char ret_dir = dirs[i_dirs];
232 if (i_dist == radius)
242 extern void draw_border_circle(struct yx_uint8 yx, uint8_t radius,
246 for (dist = 1; dist <= radius; dist++)
248 mv_yx_in_dir_wrap('w', &yx, 0);
250 next_circle_dir(1, radius);
252 while ('\0' != (dir = next_circle_dir(0, 0)))
254 if (mv_yx_in_dir_legal(dir, &yx))
256 uint16_t pos = yx_to_map_pos(&yx);
257 fov_map[pos] = LIMIT;
260 mv_yx_in_dir_wrap(0, NULL, 1);
265 static void geometry_to_char_ratio(uint8_t * n1, uint8_t * n2, uint8_t indent,
266 int16_t diff_y, int16_t diff_x,
267 uint8_t vertical, uint8_t variant)
271 *n1 = (diff_y / 2) - diff_x + ( indent * (diff_y % 2));
272 *n2 = (diff_y / 2) + diff_x + (!indent * (diff_y % 2));
277 *n2 = diff_x - (diff_y / 2) - (indent * (diff_y % 2));
289 static char * eye_to_cell_dir_ratio(char * available_dirs, uint8_t indent,
290 int16_t diff_y, int16_t diff_x,
291 uint8_t vertical, uint8_t variant,
294 char * f_name = "eye_to_cell_dir_ratio()";
296 geometry_to_char_ratio(&n1, &n2, indent, diff_y, diff_x, vertical, variant);
297 uint8_t size_chars = n1 + n2;
298 char * dirs = try_malloc(size_chars + 1, f_name);
299 uint8_t n_strong_char = n1 / n2;
300 uint8_t more_char1 = 0 < n_strong_char;
301 n_strong_char = !more_char1 ? (n2 / n1) : n_strong_char;
303 uint8_t i_of_char = shift_right;
304 for (i = 0, i_alter = 0; i < size_chars; i++)
306 char dirchar = available_dirs[i_of_char];
307 if (more_char1 != i_of_char)
310 if (i_alter == n_strong_char)
313 i_of_char = !i_of_char;
318 i_of_char = !i_of_char;
329 static char * dir_from_delta(uint8_t indent, int16_t diff_y, int16_t diff_x)
331 int16_t double_x = 2 * diff_x;
332 int16_t indent_corrected_double_x_pos = double_x - indent + !indent;
333 int16_t indent_corrected_double_x_neg = -double_x - !indent + indent;
336 if (diff_y == double_x || diff_y == indent_corrected_double_x_pos)
340 if (diff_y == -double_x || diff_y == indent_corrected_double_x_neg)
344 if (diff_y < double_x || diff_y < indent_corrected_double_x_pos)
348 if (diff_y < -double_x || diff_y < indent_corrected_double_x_neg)
356 if (diff_y == double_x || diff_y == indent_corrected_double_x_pos)
360 if (diff_y == -double_x || diff_y == indent_corrected_double_x_neg)
364 if (diff_y > double_x || diff_y > indent_corrected_double_x_pos)
368 if (diff_y > -double_x || diff_y > indent_corrected_double_x_neg)
374 return 0 > diff_x ? "s" : "d";
379 static char * eye_to_cell(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_cell,
382 int16_t diff_y = yx_cell->y - yx_eye->y;
383 int16_t diff_x = yx_cell->x - yx_eye->x;
384 uint8_t indent = yx_eye->y % 2;
385 char * dir = dir_from_delta(indent, diff_y, diff_x);
387 if (1 == strlen(dir))
391 else if (!strcmp(dir, "dc"))
393 dirs = eye_to_cell_dir_ratio(dir, indent, diff_y, diff_x, 0,0,right);
395 else if (!strcmp(dir, "xs"))
397 dirs = eye_to_cell_dir_ratio(dir, !indent, diff_y, -diff_x, 0,1,right);
399 else if (!strcmp(dir, "cx"))
401 dirs = eye_to_cell_dir_ratio(dir, indent, diff_y, diff_x, 1,0,right);
403 else if (!strcmp(dir, "sw"))
405 dirs = eye_to_cell_dir_ratio(dir, !indent, -diff_y, -diff_x, 0,0,right);
407 else if (!strcmp(dir, "ed"))
409 dirs = eye_to_cell_dir_ratio(dir, indent, -diff_y, diff_x, 0,1,right);
411 else if (!strcmp(dir, "we"))
413 dirs = eye_to_cell_dir_ratio(dir, indent, -diff_y, diff_x, 1,1,right);
420 static uint8_t is_top_left_shaded(uint16_t pos_a, uint16_t pos_b,
423 uint16_t start_last_row = world.map.length * (world.map.length - 1);
424 uint8_t a_on_left_or_bottom = 0 <= a_y_on_left
425 || (pos_a >= start_last_row);
426 uint8_t b_on_top_or_right = pos_b < world.map.length
427 || pos_b % world.map.length==world.map.length-1;
428 return pos_a != pos_b && b_on_top_or_right && a_on_left_or_bottom;
433 static void fill_shadow(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_cell,
434 uint8_t * fov_map, uint16_t pos_a, uint16_t pos_b)
436 int16_t a_y_on_left = !(pos_a%world.map.length)? pos_a/world.map.length :-1;
437 int16_t b_y_on_left = !(pos_b%world.map.length)? pos_b/world.map.length :-1;
438 uint8_t top_left_shaded = is_top_left_shaded(pos_a, pos_b, a_y_on_left);
440 uint8_t y, x, in_shade;
441 for (y = 0; y < world.map.length; y++)
443 in_shade = (top_left_shaded || (b_y_on_left >= 0 && y > b_y_on_left))
444 && (a_y_on_left < 0 || y < a_y_on_left);
445 for (x = 0; x < world.map.length; x++)
447 pos = (y * world.map.length) + x;
448 if (yx_eye->y == yx_cell->y && yx_eye->x < yx_cell->x)
450 uint8_t val = fov_map[pos] & (SHADOW_LEFT | SHADOW_RIGHT);
451 in_shade = 0 < val ? 1 : in_shade;
453 else if (yx_eye->y == yx_cell->y && yx_eye->x > yx_cell->x)
455 uint8_t val = fov_map[pos] & (SHADOW_LEFT | SHADOW_RIGHT);
456 in_shade = 0 < val ? 0 : in_shade;
458 else if (yx_eye->y > yx_cell->y && y <= yx_cell->y)
460 in_shade = 0 < (fov_map[pos] & SHADOW_LEFT) ? 1 : in_shade;
461 in_shade = (fov_map[pos] & SHADOW_RIGHT) ? 0 : in_shade;
463 else if (yx_eye->y < yx_cell->y && y >= yx_cell->y)
465 in_shade = 0 < (fov_map[pos] & SHADOW_RIGHT) ? 1 : in_shade;
466 in_shade = (fov_map[pos] & SHADOW_LEFT) ? 0 : in_shade;
468 if (!(fov_map[pos] & (SHADOW_LEFT | SHADOW_RIGHT))
471 fov_map[pos] = fov_map[pos] | HIDDEN;
479 static uint16_t shadow_arm(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_start,
480 uint8_t * fov_map, char dir, uint8_t flag,
483 struct yx_uint8 yx_border = *yx_start;
484 uint16_t pos = yx_to_map_pos(&yx_border);
485 if (mv_yx_in_dir_legal(dir, &yx_border))
487 uint8_t met_limit = 0;
489 char * dirs = eye_to_cell(yx_eye, &yx_border, shift_right);
490 yx_border = *yx_start;
491 while (!met_limit && mv_yx_in_dir_legal(dirs[i_dirs], &yx_border))
493 pos = yx_to_map_pos(&yx_border);
494 met_limit = fov_map[pos] & LIMIT;
495 fov_map[pos] = fov_map[pos] | flag;
496 i_dirs = dirs[i_dirs + 1] ? i_dirs + 1 : 0;
500 mv_yx_in_dir_wrap(0, NULL, 1);
506 static void shadow(struct yx_uint8 * yx_eye, struct yx_uint8 * yx_start,
507 uint8_t * fov_map, char dir_left, char dir_right)
509 uint16_t pos_a, pos_b, pos_start, i;
510 pos_a = shadow_arm(yx_eye, yx_start, fov_map, dir_left, SHADOW_LEFT, 0);
511 pos_b = shadow_arm(yx_eye, yx_start, fov_map, dir_right, SHADOW_RIGHT, 1);
512 pos_start = yx_to_map_pos(yx_start);
513 fov_map[pos_start] = fov_map[pos_start] | SHADOW_LEFT | SHADOW_RIGHT;
514 fill_shadow(yx_eye, yx_start, fov_map, pos_a, pos_b);
515 for (i = 0; i < world.map.length * world.map.length; i++)
517 if (fov_map[i] & (SHADOW_LEFT | SHADOW_RIGHT) && i != pos_start)
519 fov_map[i] = fov_map[i] | HIDE_LATER;
521 fov_map[i] = fov_map[i] ^ (fov_map[i] & SHADOW_LEFT);
522 fov_map[i] = fov_map[i] ^ (fov_map[i] & SHADOW_RIGHT);
529 static void set_view_of_cell_and_shadows(struct yx_uint8 * yx_cell,
530 struct yx_uint8 * yx_eye,
533 char * dirs = "dcxswe";
534 uint16_t pos = yx_to_map_pos(yx_cell);
535 if (!(fov_map[pos] & HIDDEN))
537 fov_map[pos] = fov_map[pos] | VISIBLE;
538 if ('X' == world.map.cells[pos])
540 uint8_t last_pos = strlen(dirs) - 1;
541 int16_t diff_y = yx_cell->y - yx_eye->y;
542 int16_t diff_x = yx_cell->x - yx_eye->x;
543 uint8_t indent = yx_eye->y % 2;
544 char * dir = dir_from_delta(indent, diff_y, diff_x);
545 uint8_t start_pos = strchr(dirs, dir[0]) - dirs;
546 char prev = start_pos > 0 ? dirs[start_pos - 1] : dirs[last_pos];
547 char next = start_pos < last_pos ? dirs[start_pos + 1] : dirs[0];
550 uint8_t end_pos = strchr(dirs, dir[1]) - dirs;
551 next = end_pos < last_pos ? dirs[end_pos + 1] : dirs[0];
553 shadow(yx_eye, yx_cell, fov_map, prev, next);
560 extern uint8_t * build_fov_map(struct Thing * eye)
562 char * f_name = "build_fov_map()";
563 uint8_t radius = 2 * world.map.length;
564 uint32_t map_size = world.map.length * world.map.length;
565 struct yx_uint8 yx = eye->pos;
566 uint8_t * fov_map = try_malloc(map_size, f_name);
567 memset(fov_map, 0, map_size);
568 draw_border_circle(yx, radius, fov_map);
569 fov_map[yx_to_map_pos(&yx)] = VISIBLE;
571 for (dist = 1; dist <= radius; dist++)
573 uint8_t first_round = 1;
575 next_circle_dir(1, dist);
576 while ('\0' != (dir = next_circle_dir(0, 0)))
578 char i_dir = first_round ? 'e' : dir;
580 if (mv_yx_in_dir_legal(i_dir, &yx))
582 set_view_of_cell_and_shadows(&yx, &eye->pos, fov_map);
587 for (i = 0; i < world.map.length * world.map.length; i++)
589 if (fov_map[i] & HIDE_LATER)
591 fov_map[i] = fov_map[i] ^ (fov_map[i] & VISIBLE);