'TK': {'growth': 14, 'total': 183},
'sum': {'growth': 263, 'total': 3486}
},
- # Here the growth numbers needed to be reconstructed.
- datetime.datetime(2020, 3, 10): {
- 'CW': {'growth': 2, 'total': 15},
- 'FK': {'growth': 0, 'total': 12},
- 'Li': {'growth': 4, 'total': 5},
- 'MH': {'growth': 1, 'total': 3},
- 'Mi': {'growth': 0, 'total': 8},
- 'Ne': {'growth': 2, 'total': 5},
- 'Pa': {'growth': 2, 'total': 8},
- 'Re': {'growth': 0, 'total': 3},
- 'Sp': {'growth': 4, 'total': 6},
- 'SZ': {'growth': 3, 'total': 6},
- 'TS': {'growth': 2, 'total': 7},
- 'TK': {'growth': 3, 'total': 3},
- 'sum': {'growth': 23, 'total': 81}
- },
# Here the totals needed to be reconstructed.
datetime.datetime(2020, 3, 9): {
'CW': {'growth': 4, 'total': 13},
# Collect infection data.
first_run = True
districts_sorted = []
-# TODO: Push limit further back (might need more data fixes for that).
-date_limit = datetime.datetime(2020, 3, 12)
+date_limit = datetime.datetime(2020, 3, 11)
for path in day_urls:
url = url_prefix + path
with urllib.request.urlopen(url) as response:
continue
data[date] = {}
for tr in [tr for tr in table.children if type(tr) == bs4.element.Tag][1:]:
- printable_tds = []
- for td in [td for td in tr.children if type(td) == bs4.element.Tag][:2]:
- printable_string = ' '.join([s for s in td.strings])
- printable_tds += [printable_string.strip()]
- district_long = printable_tds[0]
- district_short = [k for k in abbrevs if district_long in abbrevs[k]][0]
- if first_run:
- districts_sorted += [district_short]
- split_char = ' '
- if not split_char in printable_tds[1]:
- split_char = '('
- total_str, growth_str = printable_tds[1].split(split_char)
- growth = int(growth_str.replace('(', '').replace(')', '').replace('+', ''))
- total = int(total_str.replace('.', ''))
- data[date][district_short] = {'growth': growth, 'total': total}
+ printable_tds = []
+ for td in [td for td in tr.children if type(td) == bs4.element.Tag][:2]:
+ printable_string = ' '.join([s for s in td.strings])
+ printable_tds += [printable_string.strip()]
+ district_long = printable_tds[0]
+ district_short = [k for k in abbrevs if district_long in abbrevs[k]][0]
+ if first_run:
+ districts_sorted += [district_short]
+ if date == datetime.datetime(2020, 3, 10):
+ # For this date we only get totals.
+ data[date][district_short] = {'total': int(printable_tds[1])}
+ else:
+ split_char = ' '
+ if not split_char in printable_tds[1]:
+ split_char = '('
+ total_str, growth_str = printable_tds[1].split(split_char)
+ growth = int(growth_str.replace('(', '').replace(')', '').\
+ replace('+', ''))
+ total = int(total_str.replace('.', ''))
+ data[date][district_short] = {'growth': growth, 'total': total}
first_run = False
+def neighbor_days(day_target):
+ day_delta = datetime.timedelta(days=1)
+ return day_target + day_delta, day_target - day_delta
+
+# Reconstruct growth for 10th of March.
+day_target = datetime.datetime(2020, 3, 10)
+day_after, day_before = neighbor_days(day_target)
+for district in [d for d in districts_sorted]:
+ total_target = data[day_target][district]['total']
+ total_before = data[day_before][district]['total']
+ data[day_target][district]['growth'] = total_target - total_before
+
# Reconstruct data for 13th of March.
day_target = datetime.datetime(2020, 3, 13)
-day_after = day_target + datetime.timedelta(days=1)
-day_before = day_target - datetime.timedelta(days=1)
+day_after, day_before = neighbor_days(day_target)
data[day_target] = {}
for district in [d for d in districts_sorted]:
data[day_target][district] = {}