home · contact · privacy
bec311b56e5064258ec4a7c3cc85869d0cfa546b
[plomrogue2-experiments] / new / plomrogue / mapping.py
1 from plomrogue.errors import ArgError
2 import collections
3
4
5
6 class YX(collections.namedtuple('YX', ('y', 'x'))):
7
8     def __add__(self, other):
9         return YX(self.y + other.y, self.x + other.x)
10
11     def __sub__(self, other):
12         return YX(self.y - other.y, self.x - other.x)
13
14     def __str__(self):
15         return 'Y:%s,X:%s' % (self.y, self.x)
16
17
18
19 class Map:
20
21     def __init__(self, size=YX(0, 0), init_char = '?'):
22         self.size = size
23         self.terrain = init_char*self.size_i
24
25     def __getitem__(self, yx):
26         return self.terrain[self.get_position_index(yx)]
27
28     def __setitem__(self, yx, c):
29         pos_i = self.get_position_index(yx)
30         if type(c) == str:
31             self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
32         else:
33             self.terrain[pos_i] = c
34
35     def __iter__(self):
36         """Iterate over YX position coordinates."""
37         for y in range(self.size.y):
38             for x in range(self.size.x):
39                 yield YX(y, x)
40
41     @property
42     def size_i(self):
43         return self.size.y * self.size.x
44
45     def set_line(self, y, line):
46         height_map = self.size.y
47         width_map = self.size.x
48         if y >= height_map:
49             raise ArgError('too large row number %s' % y)
50         width_line = len(line)
51         if width_line > width_map:
52             raise ArgError('too large map line width %s' % width_line)
53         self.terrain = self.terrain[:y * width_map] + line +\
54                        self.terrain[(y + 1) * width_map:]
55
56     def get_position_index(self, yx):
57         return yx.y * self.size.x + yx.x
58
59     def lines(self):
60         width = self.size.x
61         for y in range(self.size.y):
62             yield (y, self.terrain[y * width:(y + 1) * width])
63
64
65
66 class MapGeometry():
67
68     def get_directions(self):
69         directions = []
70         for name in dir(self):
71             if name[:5] == 'move_':
72                 directions += [name[5:]]
73         return directions
74
75     def get_neighbors(self, pos, map_size):
76         neighbors = {}
77         if not hasattr(self, 'neighbors_to'):
78             self.neighbors_to = {}
79         if not map_size in self.neighbors_to:
80             self.neighbors_to[map_size] = {}
81         if pos in self.neighbors_to[map_size]:
82             return self.neighbors_to[map_size][pos]
83         for direction in self.get_directions():
84             neighbors[direction] = self.move(pos, direction, map_size)
85         self.neighbors_to[map_size][pos] = neighbors
86         return neighbors
87
88     def pos_in_projection(self, pos, offset, maps_size):
89         pos_y = pos[1].y + (maps_size.y * pos[0].y) - offset.y
90         pos_x = pos[1].x + (maps_size.x * pos[0].x) - offset.x
91         return YX(pos_y, pos_x)
92
93     def absolutize_coordinate(self, map_size, big_yx, little_yx):
94
95         def adapt_axis(axis):
96             maps_crossed = little_yx[axis] // map_size[axis]
97             new_big = big_yx[axis] + maps_crossed
98             new_little = little_yx[axis] % map_size[axis]
99             return new_big, new_little
100
101         new_big_y, new_little_y = adapt_axis(0)
102         new_big_x, new_little_x = adapt_axis(1)
103         return YX(new_big_y, new_big_x), YX(new_little_y, new_little_x)
104
105     def move(self, start_pos, direction, map_size):
106         mover = getattr(self, 'move_' + direction)
107         big_yx, little_yx = start_pos
108         unadapted_target = mover(little_yx)
109         return self.absolutize_coordinate(map_size, big_yx, unadapted_target)
110
111
112
113 class MapGeometryWithLeftRightMoves(MapGeometry):
114
115     def move_LEFT(self, start_pos):
116         return YX(start_pos.y, start_pos.x - 1)
117
118     def move_RIGHT(self, start_pos):
119         return YX(start_pos.y, start_pos.x + 1)
120
121
122
123 class MapGeometrySquare(MapGeometryWithLeftRightMoves):
124
125     def move_UP(self, start_pos):
126         return YX(start_pos.y - 1, start_pos.x)
127
128     def move_DOWN(self, start_pos):
129         return YX(start_pos.y + 1, start_pos.x)
130
131
132
133 class MapGeometryHex(MapGeometryWithLeftRightMoves):
134
135     def __init__(self, *args, **kwargs):
136         super().__init__(*args, **kwargs)
137         self.fov_map_type = FovMapHex
138
139     def move_UPLEFT(self, start_pos):
140         if start_pos.y % 2 == 1:
141             return YX(start_pos.y - 1, start_pos.x - 1)
142         else:
143             return YX(start_pos.y - 1, start_pos.x)
144
145     def move_UPRIGHT(self, start_pos):
146         if start_pos.y % 2 == 1:
147             return YX(start_pos.y - 1, start_pos.x)
148         else:
149             return YX(start_pos.y - 1, start_pos.x + 1)
150
151     def move_DOWNLEFT(self, start_pos):
152         if start_pos.y % 2 == 1:
153              return YX(start_pos.y + 1, start_pos.x - 1)
154         else:
155                return YX(start_pos.y + 1, start_pos.x)
156
157     def move_DOWNRIGHT(self, start_pos):
158         if start_pos.y % 2 == 1:
159             return YX(start_pos.y + 1, start_pos.x)
160         else:
161             return YX(start_pos.y + 1, start_pos.x + 1)
162
163
164
165 class FovMap(Map):
166
167     def __init__(self, source_map, center):
168         self.source_map = source_map
169         self.size = self.source_map.size
170         self.fov_radius = (self.size.y / 2) - 0.5
171         self.terrain = '?' * self.size_i
172         self[center] = '.'
173         self.shadow_cones = []
174         self.circle_out(center, self.shadow_process_hex)
175
176     def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress):
177         # Possible optimization: If no shadow_cones yet and self[yx] == '.',
178         # skip all.
179         CIRCLE = 360  # Since we'll float anyways, number is actually arbitrary.
180
181         def correct_arm(arm):
182             if arm < 0:
183                 arm += CIRCLE
184             return arm
185
186         def in_shadow_cone(new_cone):
187             for old_cone in self.shadow_cones:
188                 if old_cone[0] >= new_cone[0] and \
189                     new_cone[1] >= old_cone[1]:
190                     #print('DEBUG shadowed by:', old_cone)
191                     return True
192                 # We might want to also shade hexes whose middle arm is inside a
193                 # shadow cone for a darker FOV. Note that we then could not for
194                 # optimization purposes rely anymore on the assumption that a
195                 # shaded hex cannot add growth to existing shadow cones.
196             return False
197
198         def merge_cone(new_cone):
199             import math
200             for old_cone in self.shadow_cones:
201                 if new_cone[0] > old_cone[0] and \
202                     (new_cone[1] < old_cone[0] or
203                      math.isclose(new_cone[1], old_cone[0])):
204                     #print('DEBUG merging to', old_cone)
205                     old_cone[0] = new_cone[0]
206                     #print('DEBUG merged cone:', old_cone)
207                     return True
208                 if new_cone[1] < old_cone[1] and \
209                     (new_cone[0] > old_cone[1] or
210                      math.isclose(new_cone[0], old_cone[1])):
211                     #print('DEBUG merging to', old_cone)
212                     old_cone[1] = new_cone[1]
213                     #print('DEBUG merged cone:', old_cone)
214                     return True
215             return False
216
217         def eval_cone(cone):
218             #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')')
219             if in_shadow_cone(cone):
220                 return
221             self[yx] = '.'
222             if self.source_map[yx] != '.':
223                 #print('DEBUG throws shadow', cone)
224                 unmerged = True
225                 while merge_cone(cone):
226                     unmerged = False
227                 if unmerged:
228                     self.shadow_cones += [cone]
229
230         #print('DEBUG', yx)
231         step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center
232         number_steps = dir_i * distance_to_center + dir_progress
233         left_arm = correct_arm(-(step_size/2) - step_size*number_steps)
234         right_arm = correct_arm(left_arm - step_size)
235         # Optimization potential: left cone could be derived from previous
236         # right cone. Better even: Precalculate all cones.
237         if right_arm > left_arm:
238             eval_cone([left_arm, 0])
239             eval_cone([CIRCLE, right_arm])
240         else:
241             eval_cone([left_arm, right_arm])
242
243     def basic_circle_out_move(self, pos, direction):
244         """Move position pos into direction. Return whether still in map."""
245         mover = getattr(self.geometry, 'move_' + direction)
246         pos = mover(pos)
247         if pos.y < 0 or pos.x < 0 or \
248             pos.y >= self.size.y or pos.x >= self.size.x:
249             return pos, False
250         return pos, True
251
252     def circle_out(self, yx, f):
253         # Optimization potential: Precalculate movement positions. (How to check
254         # circle_in_map then?)
255         # Optimization potential: Precalculate what hexes are shaded by what hex
256         # and skip evaluation of already shaded hexes. (This only works if hex
257         # shading implies they completely lie in existing shades; otherwise we
258         # would lose shade growth through hexes at shade borders.)
259
260         # TODO: Start circling only in earliest obstacle distance.
261         # TODO: get rid of circle_in_map logic
262         circle_in_map = True
263         distance = 1
264         yx = YX(yx.y, yx.x)
265         #print('DEBUG CIRCLE_OUT', yx)
266         while circle_in_map:
267             if distance > self.fov_radius:
268                 break
269             circle_in_map = False
270             yx, _ = self.basic_circle_out_move(yx, 'RIGHT')
271             for dir_i in range(len(self.circle_out_directions)):
272                 for dir_progress in range(distance):
273                     direction = self.circle_out_directions[dir_i]
274                     yx, test = self.circle_out_move(yx, direction)
275                     if test:
276                         f(yx, distance, dir_i, dir_progress)
277                         circle_in_map = True
278             distance += 1
279
280
281
282 class FovMapHex(FovMap):
283     circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT',
284                              'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
285
286     def __init__(self, *args, **kwargs):
287         self.geometry = MapGeometryHex()
288         super().__init__(*args, **kwargs)
289
290     def circle_out_move(self, yx, direction):
291         return self.basic_circle_out_move(yx, direction)
292
293
294
295 class FovMapSquare(FovMap):
296     circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'),
297                              ('UP', 'RIGHT'), ('RIGHT', 'DOWN'))
298
299     def __init__(self, *args, **kwargs):
300         self.geometry = MapGeometrySquare()
301         super().__init__(*args, **kwargs)
302
303     def circle_out_move(self, yx, direction):
304         self.basic_circle_out_move(yx, direction[0])
305         return self.basic_circle_out_move(yx, direction[1])
306