home · contact · privacy
9826e6887eb9571cdd53349f9217184321000cf8
[plomrogue2-experiments] / new / plomrogue / mapping.py
1 from plomrogue.errors import ArgError
2 import collections
3
4
5
6 class YX(collections.namedtuple('YX', ('y', 'x'))):
7
8     def __add__(self, other):
9         return YX(self.y + other.y, self.x + other.x)
10
11     def __sub__(self, other):
12         return YX(self.y - other.y, self.x - other.x)
13
14     def __str__(self):
15         return 'Y:%s,X:%s' % (self.y, self.x)
16
17
18
19 class Map:
20
21     def __init__(self, size=YX(0, 0), init_char = '?'):
22         self.size = size
23         self.terrain = init_char*self.size_i
24
25     def __getitem__(self, yx):
26         return self.terrain[self.get_position_index(yx)]
27
28     def __setitem__(self, yx, c):
29         pos_i = self.get_position_index(yx)
30         if type(c) == str:
31             self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
32         else:
33             self.terrain[pos_i] = c
34
35     def __iter__(self):
36         """Iterate over YX position coordinates."""
37         for y in range(self.size.y):
38             for x in range(self.size.x):
39                 yield YX(y, x)
40
41     @property
42     def size_i(self):
43         return self.size.y * self.size.x
44
45     def set_line(self, y, line):
46         height_map = self.size.y
47         width_map = self.size.x
48         if y >= height_map:
49             raise ArgError('too large row number %s' % y)
50         width_line = len(line)
51         if width_line > width_map:
52             raise ArgError('too large map line width %s' % width_line)
53         self.terrain = self.terrain[:y * width_map] + line +\
54                        self.terrain[(y + 1) * width_map:]
55
56     def get_position_index(self, yx):
57         return yx.y * self.size.x + yx.x
58
59     def lines(self):
60         width = self.size.x
61         for y in range(self.size.y):
62             yield (y, self.terrain[y * width:(y + 1) * width])
63
64
65
66 class MapGeometry():
67
68     def get_directions(self):
69         directions = []
70         for name in dir(self):
71             if name[:5] == 'move_':
72                 directions += [name[5:]]
73         return directions
74
75     def get_neighbors(self, pos, map_size):
76         neighbors = {}
77         if not hasattr(self, 'neighbors_to'):
78             self.neighbors_to = {}
79         if not map_size in self.neighbors_to:
80             self.neighbors_to[map_size] = {}
81         if pos in self.neighbors_to[map_size]:
82             return self.neighbors_to[map_size][pos]
83         for direction in self.get_directions():
84             neighbors[direction] = self.move(pos, direction, map_size)
85         self.neighbors_to[map_size][pos] = neighbors
86         return neighbors
87
88     def pos_in_projection(self, pos, offset, maps_size):
89         pos_y = pos[1].y + (maps_size.y * pos[0].y) - offset.y
90         pos_x = pos[1].x + (maps_size.x * pos[0].x) - offset.x
91         return YX(pos_y, pos_x)
92
93     def correct_double_coordinate(self, map_size, big_yx, little_yx):
94
95         def adapt_axis(axis):
96             maps_crossed = little_yx[axis] // map_size[axis]
97             new_big = big_yx[axis] + maps_crossed
98             new_little = little_yx[axis] % map_size[axis]
99             return new_big, new_little
100
101         new_big_y, new_little_y = adapt_axis(0)
102         new_big_x, new_little_x = adapt_axis(1)
103         return YX(new_big_y, new_big_x), YX(new_little_y, new_little_x)
104
105     def move(self, start_pos, direction, map_size):
106         mover = getattr(self, 'move_' + direction)
107         big_yx, little_yx = start_pos
108         uncorrected_target = mover(little_yx)
109         return self.correct_double_coordinate(map_size, big_yx,
110                                               uncorrected_target)
111
112
113
114 class MapGeometryWithLeftRightMoves(MapGeometry):
115
116     def move_LEFT(self, start_pos):
117         return YX(start_pos.y, start_pos.x - 1)
118
119     def move_RIGHT(self, start_pos):
120         return YX(start_pos.y, start_pos.x + 1)
121
122
123
124 class MapGeometrySquare(MapGeometryWithLeftRightMoves):
125
126     def move_UP(self, start_pos):
127         return YX(start_pos.y - 1, start_pos.x)
128
129     def move_DOWN(self, start_pos):
130         return YX(start_pos.y + 1, start_pos.x)
131
132
133
134 class MapGeometryHex(MapGeometryWithLeftRightMoves):
135
136     def __init__(self, *args, **kwargs):
137         super().__init__(*args, **kwargs)
138         self.fov_map_type = FovMapHex
139
140     def move_UPLEFT(self, start_pos):
141         if start_pos.y % 2 == 1:
142             return YX(start_pos.y - 1, start_pos.x - 1)
143         else:
144             return YX(start_pos.y - 1, start_pos.x)
145
146     def move_UPRIGHT(self, start_pos):
147         if start_pos.y % 2 == 1:
148             return YX(start_pos.y - 1, start_pos.x)
149         else:
150             return YX(start_pos.y - 1, start_pos.x + 1)
151
152     def move_DOWNLEFT(self, start_pos):
153         if start_pos.y % 2 == 1:
154              return YX(start_pos.y + 1, start_pos.x - 1)
155         else:
156                return YX(start_pos.y + 1, start_pos.x)
157
158     def move_DOWNRIGHT(self, start_pos):
159         if start_pos.y % 2 == 1:
160             return YX(start_pos.y + 1, start_pos.x)
161         else:
162             return YX(start_pos.y + 1, start_pos.x + 1)
163
164
165
166 class FovMap(Map):
167
168     def __init__(self, source_map, center):
169         self.source_map = source_map
170         self.size = self.source_map.size
171         self.fov_radius = (self.size.y / 2) - 0.5
172         self.terrain = '?' * self.size_i
173         self[center] = '.'
174         self.shadow_cones = []
175         self.circle_out(center, self.shadow_process_hex)
176
177     def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress):
178         # Possible optimization: If no shadow_cones yet and self[yx] == '.',
179         # skip all.
180         CIRCLE = 360  # Since we'll float anyways, number is actually arbitrary.
181
182         def correct_arm(arm):
183             if arm < 0:
184                 arm += CIRCLE
185             return arm
186
187         def in_shadow_cone(new_cone):
188             for old_cone in self.shadow_cones:
189                 if old_cone[0] >= new_cone[0] and \
190                     new_cone[1] >= old_cone[1]:
191                     #print('DEBUG shadowed by:', old_cone)
192                     return True
193                 # We might want to also shade hexes whose middle arm is inside a
194                 # shadow cone for a darker FOV. Note that we then could not for
195                 # optimization purposes rely anymore on the assumption that a
196                 # shaded hex cannot add growth to existing shadow cones.
197             return False
198
199         def merge_cone(new_cone):
200             import math
201             for old_cone in self.shadow_cones:
202                 if new_cone[0] > old_cone[0] and \
203                     (new_cone[1] < old_cone[0] or
204                      math.isclose(new_cone[1], old_cone[0])):
205                     #print('DEBUG merging to', old_cone)
206                     old_cone[0] = new_cone[0]
207                     #print('DEBUG merged cone:', old_cone)
208                     return True
209                 if new_cone[1] < old_cone[1] and \
210                     (new_cone[0] > old_cone[1] or
211                      math.isclose(new_cone[0], old_cone[1])):
212                     #print('DEBUG merging to', old_cone)
213                     old_cone[1] = new_cone[1]
214                     #print('DEBUG merged cone:', old_cone)
215                     return True
216             return False
217
218         def eval_cone(cone):
219             #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')')
220             if in_shadow_cone(cone):
221                 return
222             self[yx] = '.'
223             if self.source_map[yx] != '.':
224                 #print('DEBUG throws shadow', cone)
225                 unmerged = True
226                 while merge_cone(cone):
227                     unmerged = False
228                 if unmerged:
229                     self.shadow_cones += [cone]
230
231         #print('DEBUG', yx)
232         step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center
233         number_steps = dir_i * distance_to_center + dir_progress
234         left_arm = correct_arm(-(step_size/2) - step_size*number_steps)
235         right_arm = correct_arm(left_arm - step_size)
236         # Optimization potential: left cone could be derived from previous
237         # right cone. Better even: Precalculate all cones.
238         if right_arm > left_arm:
239             eval_cone([left_arm, 0])
240             eval_cone([CIRCLE, right_arm])
241         else:
242             eval_cone([left_arm, right_arm])
243
244     def basic_circle_out_move(self, pos, direction):
245         """Move position pos into direction. Return whether still in map."""
246         mover = getattr(self.geometry, 'move_' + direction)
247         pos = mover(pos)
248         if pos.y < 0 or pos.x < 0 or \
249             pos.y >= self.size.y or pos.x >= self.size.x:
250             return pos, False
251         return pos, True
252
253     def circle_out(self, yx, f):
254         # Optimization potential: Precalculate movement positions. (How to check
255         # circle_in_map then?)
256         # Optimization potential: Precalculate what hexes are shaded by what hex
257         # and skip evaluation of already shaded hexes. (This only works if hex
258         # shading implies they completely lie in existing shades; otherwise we
259         # would lose shade growth through hexes at shade borders.)
260
261         # TODO: Start circling only in earliest obstacle distance.
262         # TODO: get rid of circle_in_map logic
263         circle_in_map = True
264         distance = 1
265         yx = YX(yx.y, yx.x)
266         #print('DEBUG CIRCLE_OUT', yx)
267         while circle_in_map:
268             if distance > self.fov_radius:
269                 break
270             circle_in_map = False
271             yx, _ = self.basic_circle_out_move(yx, 'RIGHT')
272             for dir_i in range(len(self.circle_out_directions)):
273                 for dir_progress in range(distance):
274                     direction = self.circle_out_directions[dir_i]
275                     yx, test = self.circle_out_move(yx, direction)
276                     if test:
277                         f(yx, distance, dir_i, dir_progress)
278                         circle_in_map = True
279             distance += 1
280
281
282
283 class FovMapHex(FovMap):
284     circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT',
285                              'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
286
287     def __init__(self, *args, **kwargs):
288         self.geometry = MapGeometryHex()
289         super().__init__(*args, **kwargs)
290
291     def circle_out_move(self, yx, direction):
292         return self.basic_circle_out_move(yx, direction)
293
294
295
296 class FovMapSquare(FovMap):
297     circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'),
298                              ('UP', 'RIGHT'), ('RIGHT', 'DOWN'))
299
300     def __init__(self, *args, **kwargs):
301         self.geometry = MapGeometrySquare()
302         super().__init__(*args, **kwargs)
303
304     def circle_out_move(self, yx, direction):
305         self.basic_circle_out_move(yx, direction[0])
306         return self.basic_circle_out_move(yx, direction[1])
307