home · contact · privacy
e6ae9871b13fabaeb24f7e6bc76892c03a1e8099
[plomrogue2-experiments] / new / plomrogue / mapping.py
1 from plomrogue.errors import ArgError
2 import collections
3
4
5
6 class YX(collections.namedtuple('YX', ('y', 'x'))):
7
8     def __add__(self, other):
9         return YX(self.y + other.y, self.x + other.x)
10
11     def __sub__(self, other):
12         return YX(self.y - other.y, self.x - other.x)
13
14     def __str__(self):
15         return 'Y:%s,X:%s' % (self.y, self.x)
16
17
18
19 class Map:
20
21     def __init__(self, size=YX(0, 0), init_char = '?'):
22         self.size = size
23         self.terrain = init_char*self.size_i
24
25     def __getitem__(self, yx):
26         return self.terrain[self.get_position_index(yx)]
27
28     def __setitem__(self, yx, c):
29         pos_i = self.get_position_index(yx)
30         if type(c) == str:
31             self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
32         else:
33             self.terrain[pos_i] = c
34
35     def __iter__(self):
36         """Iterate over YX position coordinates."""
37         for y in range(self.size.y):
38             for x in range(self.size.x):
39                 yield YX(y, x)
40
41     @property
42     def size_i(self):
43         return self.size.y * self.size.x
44
45     def set_line(self, y, line):
46         height_map = self.size.y
47         width_map = self.size.x
48         if y >= height_map:
49             raise ArgError('too large row number %s' % y)
50         width_line = len(line)
51         if width_line > width_map:
52             raise ArgError('too large map line width %s' % width_line)
53         self.terrain = self.terrain[:y * width_map] + line +\
54                        self.terrain[(y + 1) * width_map:]
55
56     def get_position_index(self, yx):
57         return yx.y * self.size.x + yx.x
58
59     def lines(self):
60         width = self.size.x
61         for y in range(self.size.y):
62             yield (y, self.terrain[y * width:(y + 1) * width])
63
64
65
66 class MapGeometry():
67
68     def get_directions(self):
69         directions = []
70         for name in dir(self):
71             if name[:5] == 'move_':
72                 directions += [name[5:]]
73         return directions
74
75     def get_neighbors(self, pos, map_size):
76         neighbors = {}
77         if not hasattr(self, 'neighbors_to'):
78             self.neighbors_to = {}
79         if not map_size in self.neighbors_to:
80             self.neighbors_to[map_size] = {}
81         if pos in self.neighbors_to[map_size]:
82             return self.neighbors_to[map_size][pos]
83         for direction in self.get_directions():
84             neighbors[direction] = self.move(pos, direction, map_size)
85         self.neighbors_to[map_size][pos] = neighbors
86         return neighbors
87
88     def undouble_coordinate(self, maps_size, coordinate):
89         y = maps_size.y * coordinate[0].y + coordinate[1].y
90         x = maps_size.x * coordinate[0].x + coordinate[1].x
91         return YX(y, x)
92
93     def get_view_offset(self, maps_size, center, radius):
94         yx_to_origin = self.undouble_coordinate(maps_size, center)
95         return yx_to_origin - YX(radius, radius)
96
97     def pos_in_view(self, pos, offset, maps_size):
98         return self.undouble_coordinate(maps_size, pos) - offset
99
100     def correct_double_coordinate(self, map_size, big_yx, little_yx):
101
102         def adapt_axis(axis):
103             maps_crossed = little_yx[axis] // map_size[axis]
104             new_big = big_yx[axis] + maps_crossed
105             new_little = little_yx[axis] % map_size[axis]
106             return new_big, new_little
107
108         new_big_y, new_little_y = adapt_axis(0)
109         new_big_x, new_little_x = adapt_axis(1)
110         return YX(new_big_y, new_big_x), YX(new_little_y, new_little_x)
111
112     def move(self, start_pos, direction, map_size):
113         mover = getattr(self, 'move_' + direction)
114         big_yx, little_yx = start_pos
115         uncorrected_target = mover(little_yx)
116         return self.correct_double_coordinate(map_size, big_yx,
117                                               uncorrected_target)
118
119
120
121 class MapGeometryWithLeftRightMoves(MapGeometry):
122
123     def move_LEFT(self, start_pos):
124         return YX(start_pos.y, start_pos.x - 1)
125
126     def move_RIGHT(self, start_pos):
127         return YX(start_pos.y, start_pos.x + 1)
128
129
130
131 class MapGeometrySquare(MapGeometryWithLeftRightMoves):
132
133     def move_UP(self, start_pos):
134         return YX(start_pos.y - 1, start_pos.x)
135
136     def move_DOWN(self, start_pos):
137         return YX(start_pos.y + 1, start_pos.x)
138
139
140
141 class MapGeometryHex(MapGeometryWithLeftRightMoves):
142
143     def __init__(self, *args, **kwargs):
144         super().__init__(*args, **kwargs)
145         self.fov_map_type = FovMapHex
146
147     def move_UPLEFT(self, start_pos):
148         if start_pos.y % 2 == 1:
149             return YX(start_pos.y - 1, start_pos.x - 1)
150         else:
151             return YX(start_pos.y - 1, start_pos.x)
152
153     def move_UPRIGHT(self, start_pos):
154         if start_pos.y % 2 == 1:
155             return YX(start_pos.y - 1, start_pos.x)
156         else:
157             return YX(start_pos.y - 1, start_pos.x + 1)
158
159     def move_DOWNLEFT(self, start_pos):
160         if start_pos.y % 2 == 1:
161              return YX(start_pos.y + 1, start_pos.x - 1)
162         else:
163                return YX(start_pos.y + 1, start_pos.x)
164
165     def move_DOWNRIGHT(self, start_pos):
166         if start_pos.y % 2 == 1:
167             return YX(start_pos.y + 1, start_pos.x)
168         else:
169             return YX(start_pos.y + 1, start_pos.x + 1)
170
171
172
173 class FovMap(Map):
174
175     def __init__(self, source_map, center):
176         self.source_map = source_map
177         self.size = self.source_map.size
178         self.fov_radius = (self.size.y / 2) - 0.5
179         self.terrain = '?' * self.size_i
180         self[center] = '.'
181         self.shadow_cones = []
182         self.circle_out(center, self.shadow_process_hex)
183
184     def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress):
185         # Possible optimization: If no shadow_cones yet and self[yx] == '.',
186         # skip all.
187         CIRCLE = 360  # Since we'll float anyways, number is actually arbitrary.
188
189         def correct_arm(arm):
190             if arm < 0:
191                 arm += CIRCLE
192             return arm
193
194         def in_shadow_cone(new_cone):
195             for old_cone in self.shadow_cones:
196                 if old_cone[0] >= new_cone[0] and \
197                     new_cone[1] >= old_cone[1]:
198                     #print('DEBUG shadowed by:', old_cone)
199                     return True
200                 # We might want to also shade hexes whose middle arm is inside a
201                 # shadow cone for a darker FOV. Note that we then could not for
202                 # optimization purposes rely anymore on the assumption that a
203                 # shaded hex cannot add growth to existing shadow cones.
204             return False
205
206         def merge_cone(new_cone):
207             import math
208             for old_cone in self.shadow_cones:
209                 if new_cone[0] > old_cone[0] and \
210                     (new_cone[1] < old_cone[0] or
211                      math.isclose(new_cone[1], old_cone[0])):
212                     #print('DEBUG merging to', old_cone)
213                     old_cone[0] = new_cone[0]
214                     #print('DEBUG merged cone:', old_cone)
215                     return True
216                 if new_cone[1] < old_cone[1] and \
217                     (new_cone[0] > old_cone[1] or
218                      math.isclose(new_cone[0], old_cone[1])):
219                     #print('DEBUG merging to', old_cone)
220                     old_cone[1] = new_cone[1]
221                     #print('DEBUG merged cone:', old_cone)
222                     return True
223             return False
224
225         def eval_cone(cone):
226             #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')')
227             if in_shadow_cone(cone):
228                 return
229             self[yx] = '.'
230             if self.source_map[yx] != '.':
231                 #print('DEBUG throws shadow', cone)
232                 unmerged = True
233                 while merge_cone(cone):
234                     unmerged = False
235                 if unmerged:
236                     self.shadow_cones += [cone]
237
238         #print('DEBUG', yx)
239         step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center
240         number_steps = dir_i * distance_to_center + dir_progress
241         left_arm = correct_arm(-(step_size/2) - step_size*number_steps)
242         right_arm = correct_arm(left_arm - step_size)
243         # Optimization potential: left cone could be derived from previous
244         # right cone. Better even: Precalculate all cones.
245         if right_arm > left_arm:
246             eval_cone([left_arm, 0])
247             eval_cone([CIRCLE, right_arm])
248         else:
249             eval_cone([left_arm, right_arm])
250
251     def basic_circle_out_move(self, pos, direction):
252         """Move position pos into direction. Return whether still in map."""
253         mover = getattr(self.geometry, 'move_' + direction)
254         pos = mover(pos)
255         if pos.y < 0 or pos.x < 0 or \
256             pos.y >= self.size.y or pos.x >= self.size.x:
257             return pos, False
258         return pos, True
259
260     def circle_out(self, yx, f):
261         # Optimization potential: Precalculate movement positions. (How to check
262         # circle_in_map then?)
263         # Optimization potential: Precalculate what hexes are shaded by what hex
264         # and skip evaluation of already shaded hexes. (This only works if hex
265         # shading implies they completely lie in existing shades; otherwise we
266         # would lose shade growth through hexes at shade borders.)
267
268         # TODO: Start circling only in earliest obstacle distance.
269         # TODO: get rid of circle_in_map logic
270         circle_in_map = True
271         distance = 1
272         yx = YX(yx.y, yx.x)
273         #print('DEBUG CIRCLE_OUT', yx)
274         while circle_in_map:
275             if distance > self.fov_radius:
276                 break
277             circle_in_map = False
278             yx, _ = self.basic_circle_out_move(yx, 'RIGHT')
279             for dir_i in range(len(self.circle_out_directions)):
280                 for dir_progress in range(distance):
281                     direction = self.circle_out_directions[dir_i]
282                     yx, test = self.circle_out_move(yx, direction)
283                     if test:
284                         f(yx, distance, dir_i, dir_progress)
285                         circle_in_map = True
286             distance += 1
287
288
289
290 class FovMapHex(FovMap):
291     circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT',
292                              'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
293
294     def __init__(self, *args, **kwargs):
295         self.geometry = MapGeometryHex()
296         super().__init__(*args, **kwargs)
297
298     def circle_out_move(self, yx, direction):
299         return self.basic_circle_out_move(yx, direction)
300
301
302
303 class FovMapSquare(FovMap):
304     circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'),
305                              ('UP', 'RIGHT'), ('RIGHT', 'DOWN'))
306
307     def __init__(self, *args, **kwargs):
308         self.geometry = MapGeometrySquare()
309         super().__init__(*args, **kwargs)
310
311     def circle_out_move(self, yx, direction):
312         self.basic_circle_out_move(yx, direction[0])
313         return self.basic_circle_out_move(yx, direction[1])
314