home · contact · privacy
Refactor.
[plomrogue2-experiments] / server_ / map_.py
index 444566d78cc82d33a11901216bb6c02d5fd9db58..35d29c6b56da95fd2f25c4e35f4e85a3ff419da8 100644 (file)
@@ -2,6 +2,7 @@ import sys
 sys.path.append('../')
 import game_common
 import server_.game
+import math
 
 
 class Map(game_common.Map):
@@ -11,7 +12,10 @@ class Map(game_common.Map):
 
     def __setitem__(self, yx, c):
         pos_i = self.get_position_index(yx)
-        self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
+        if type(c) == str:
+            self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
+        else:
+            self.terrain[pos_i] = c
 
     def __iter__(self):
         """Iterate over YX position coordinates."""
@@ -29,9 +33,9 @@ class Map(game_common.Map):
             yield (y, self.terrain[y * width:(y + 1) * width])
 
     def get_fov_map(self, yx):
-        # TODO: Currently only have MapFovHex. Provide MapFovSquare.
-        fov_map_class = map_manager.get_map_class('Fov' + self.geometry)
-        return fov_map_class(self, yx)
+        fov_class_name = 'Fov' + self.__class__.__name__
+        fov_class = globals()[fov_class_name]
+        return fov_class(self, yx)
 
     # The following is used nowhere, so not implemented.
     #def items(self):
@@ -96,9 +100,9 @@ class MapHex(Map):
 
     def move_DOWNLEFT(self, start_pos):
         if start_pos[0] % 2 == 1:
-            return [start_pos[0] + 1, start_pos[1] - 1]
+             return [start_pos[0] + 1, start_pos[1] - 1]
         else:
-            return [start_pos[0] + 1, start_pos[1]]
+               return [start_pos[0] + 1, start_pos[1]]
 
     def move_DOWNRIGHT(self, start_pos):
         if start_pos[0] % 2 == 1:
@@ -106,117 +110,186 @@ class MapHex(Map):
         else:
             return [start_pos[0] + 1, start_pos[1] + 1]
 
+    def get_neighbors(self, pos):
+        # DOWNLEFT, DOWNRIGHT, LEFT, RIGHT, UPLEFT, UPRIGHT (alphabetically)
+        neighbors = [None, None, None, None, None, None]  # e, d, c, x, s, w
+        if pos[1] > 0:
+            neighbors[2] = [pos[0], pos[1] - 1]
+        if pos[1] < self.size[1] - 1:
+            neighbors[3] = [pos[0], pos[1] + 1]
+        # x, c, s, d, w, e  # 3->0, 2->1, 5->4, 0->5
+        if pos[0] % 2 == 1:
+            if pos[0] > 0 and pos[1] > 0:
+                neighbors[4] = [pos[0] - 1, pos[1] - 1]
+            if pos[0] < self.size[0] - 1 and pos[1] > 0:
+                neighbors[0] = [pos[0] + 1, pos[1] - 1]
+            if pos[0] > 0:
+                neighbors[5] = [pos[0] - 1, pos[1]]
+            if pos[0] < self.size[0] - 1:
+                neighbors[1] = [pos[0] + 1, pos[1]]
+        else:
+            if pos[0] > 0 and pos[1] < self.size[1] - 1:
+                neighbors[5] = [pos[0] - 1, pos[1] + 1]
+            if pos[0] < self.size[0] - 1 and pos[1] < self.size[1] - 1:
+                neighbors[1] = [pos[0] + 1, pos[1] + 1]
+            if pos[0] > 0:
+                neighbors[4] = [pos[0] - 1, pos[1]]
+            if pos[0] < self.size[0] - 1:
+                neighbors[0] = [pos[0] + 1, pos[1]]
+        return neighbors
+
+
+class MapSquare(Map):
+
+    # The following is used nowhere, so not implemented.
+    #def are_neighbors(self, pos_1, pos_2):
+    #    return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1)
+
+    def move_UP(self, start_pos):
+        return [start_pos[0] - 1, start_pos[1]]
+
+    def move_DOWN(self, start_pos):
+        return [start_pos[0] + 1, start_pos[1]]
 
-class MapFovHex(MapHex):
+    def get_neighbors(self, pos):
+        # DOWN, LEFT, RIGHT, UP  (alphabetically)
+        neighbors = [None, None, None, None]
+        if pos[0] > 0:
+            neighbors[3] = [pos[0] - 1, pos[1]]
+        if pos[1] > 0:
+            neighbors[1] = [pos[0], pos[1] - 1]
+        if pos[0] < self.size[0] - 1:
+            neighbors[0] = [pos[0] + 1, pos[1]]
+        if pos[1] < self.size[1] - 1:
+            neighbors[2] = [pos[0], pos[1] + 1]
+        return neighbors
+
+
+class FovMap:
 
     def __init__(self, source_map, yx):
         self.source_map = source_map
         self.size = self.source_map.size
         self.terrain = '?' * self.size_i
         self[yx] = '.'
-        self.shadow_angles = []
+        self.shadow_cones = []
         self.circle_out(yx, self.shadow_process_hex)
 
-    def shadow_process_hex(self, yx, distance_to_center, dir_i, hex_i):
-        # TODO: If no shadow_angles yet and self[yx] == '.', skip all.
+    def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress):
+        # Possible optimization: If no shadow_cones yet and self[yx] == '.',
+        # skip all.
         CIRCLE = 360  # Since we'll float anyways, number is actually arbitrary.
 
-        def correct_angle(angle):
-            if angle < 0:
-                angle += CIRCLE
-            return angle
+        def correct_arm(arm):
+            if arm < 0:
+                arm += CIRCLE
+            return arm
 
-        def under_shadow_angle(new_angle):
-            for old_angle in self.shadow_angles:
-                if old_angle[0] >= new_angle[0] and \
-                    new_angle[1] >= old_angle[1]:
-                    #print('DEBUG shadowed by:', old_angle)
+        def in_shadow_cone(new_cone):
+            for old_cone in self.shadow_cones:
+                if old_cone[0] >= new_cone[0] and \
+                    new_cone[1] >= old_cone[1]:
+                    #print('DEBUG shadowed by:', old_cone)
                     return True
+                # We might want to also shade hexes whose middle arm is inside a
+                # shadow cone for a darker FOV. Note that we then could not for
+                # optimization purposes rely anymore on the assumption that a
+                # shaded hex cannot add growth to existing shadow cones.
             return False
 
-        def merge_angle(new_angle):
-            for old_angle in self.shadow_angles:
-                if new_angle[0] > old_angle[0] and \
-                    new_angle[1] <= old_angle[0]:
-                    #print('DEBUG merging to', old_angle)
-                    old_angle[0] = new_angle[0]
-                    #print('DEBUG merged angle:', old_angle)
+        def merge_cone(new_cone):
+            for old_cone in self.shadow_cones:
+                if new_cone[0] > old_cone[0] and \
+                    (new_cone[1] < old_cone[0] or
+                     math.isclose(new_cone[1], old_cone[0])):
+                    #print('DEBUG merging to', old_cone)
+                    old_cone[0] = new_cone[0]
+                    #print('DEBUG merged cone:', old_cone)
                     return True
-                if new_angle[1] < old_angle[1] and \
-                    new_angle[0] >= old_angle[1]:
-                    #print('DEBUG merging to', old_angle)
-                    old_angle[1] = new_angle[1]
-                    #print('DEBUG merged angle:', old_angle)
+                if new_cone[1] < old_cone[1] and \
+                    (new_cone[0] > old_cone[1] or
+                     math.isclose(new_cone[0], old_cone[1])):
+                    #print('DEBUG merging to', old_cone)
+                    old_cone[1] = new_cone[1]
+                    #print('DEBUG merged cone:', old_cone)
                     return True
             return False
 
-        def eval_angle(angle):
-            new_angle = [left_angle, right_angle]
-            #print('DEBUG ANGLE', angle, '(', step_size, distance_to_center, number_steps, ')')
-            if under_shadow_angle(angle):
+        def eval_cone(cone):
+            #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')')
+            if in_shadow_cone(cone):
                 return
             self[yx] = '.'
             if self.source_map[yx] != '.':
-                #print('DEBUG throws shadow', angle)
+                #print('DEBUG throws shadow', cone)
                 unmerged = True
-                while merge_angle(angle):
+                while merge_cone(cone):
                     unmerged = False
                 if unmerged:
-                    self.shadow_angles += [angle]
+                    self.shadow_cones += [cone]
 
         #print('DEBUG', yx)
-        step_size = (CIRCLE/6)/distance_to_center
-        number_steps = dir_i * distance_to_center + hex_i
-        left_angle = correct_angle(-(step_size/2) - step_size*number_steps)
-        right_angle = correct_angle(left_angle - step_size)
-        # TODO: derive left_angle from prev right_angle where possible
-        if right_angle > left_angle:
-            eval_angle([left_angle, 0])
-            eval_angle([CIRCLE, right_angle])
+        step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center
+        number_steps = dir_i * distance_to_center + dir_progress
+        left_arm = correct_arm(-(step_size/2) - step_size*number_steps)
+        right_arm = correct_arm(left_arm - step_size)
+        # Optimization potential: left cone could be derived from previous
+        # right cone. Better even: Precalculate all cones.
+        if right_arm > left_arm:
+            eval_cone([left_arm, 0])
+            eval_cone([CIRCLE, right_arm])
         else:
-            eval_angle([left_angle, right_angle])
+            eval_cone([left_arm, right_arm])
 
-    def circle_out(self, yx, f):
+    def basic_circle_out_move(self, pos, direction):
+        """Move position pos into direction. Return whether still in map."""
+        mover = getattr(self, 'move_' + direction)
+        pos[:] = mover(pos)
+        if pos[0] < 0 or pos[1] < 0 or \
+            pos[0] >= self.size[0] or pos[1] >= self.size[1]:
+            return False
+        return True
 
-        def move(pos, direction):
-            """Move position pos into direction. Return whether still in map."""
-            mover = getattr(self, 'move_' + direction)
-            pos[:] = mover(pos)
-            if pos[0] < 0 or pos[1] < 0 or \
-               pos[0] >= self.size[0] or pos[1] >= self.size[1]:
-                return False
-            return True
+    def circle_out(self, yx, f):
+        # Optimization potential: Precalculate movement positions. (How to check
+        # circle_in_map then?)
+        # Optimization potential: Precalculate what hexes are shaded by what hex
+        # and skip evaluation of already shaded hexes. (This only works if hex
+        # shading implies they completely lie in existing shades; otherwise we
+        # would lose shade growth through hexes at shade borders.)
 
         # TODO: Start circling only in earliest obstacle distance.
-        directions = ('DOWNLEFT', 'LEFT', 'UPLEFT', 'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
         circle_in_map = True
         distance = 1
-        first_direction = 'RIGHT'
         yx = yx[:]
         #print('DEBUG CIRCLE_OUT', yx)
         while circle_in_map:
             circle_in_map = False
-            move(yx, 'RIGHT')
-            for dir_i in range(len(directions)):
-                for hex_i in range(distance):
-                    direction = directions[dir_i]
-                    if move(yx, direction):
-                        f(yx, distance, dir_i, hex_i)
+            self.basic_circle_out_move(yx, 'RIGHT')
+            for dir_i in range(len(self.circle_out_directions)):
+                for dir_progress in range(distance):
+                    direction = self.circle_out_directions[dir_i]
+                    if self.circle_out_move(yx, direction):
+                        f(yx, distance, dir_i, dir_progress)
                         circle_in_map = True
             distance += 1
 
 
-class MapSquare(Map):
+class FovMapHex(FovMap, MapHex):
+    circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT',
+                             'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
 
-    # The following is used nowhere, so not implemented.
-    #def are_neighbors(self, pos_1, pos_2):
-    #    return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1)
+    def circle_out_move(self, yx, direction):
+        return self.basic_circle_out_move(yx, direction)
 
-    def move_UP(self, start_pos):
-        return [start_pos[0] - 1, start_pos[1]]
 
-    def move_DOWN(self, start_pos):
-        return [start_pos[0] + 1, start_pos[1]]
+class FovMapSquare(FovMap, MapSquare):
+    circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'),
+                             ('UP', 'RIGHT'), ('RIGHT', 'DOWN'))
+
+    def circle_out_move(self, yx, direction):
+        self.basic_circle_out_move(yx, direction[0])
+        return self.basic_circle_out_move(yx, direction[1])
 
 
-map_manager = game_common.MapManager(globals())
+map_manager = game_common.MapManager((MapHex, MapSquare))