home · contact · privacy
Refactor.
[plomrogue2-experiments] / server_ / map_.py
index 9dc96d0a3c304c0fe19f1e2df13f741ac84a4b3f..35d29c6b56da95fd2f25c4e35f4e85a3ff419da8 100644 (file)
@@ -2,6 +2,7 @@ import sys
 sys.path.append('../')
 import game_common
 import server_.game
+import math
 
 
 class Map(game_common.Map):
@@ -11,7 +12,10 @@ class Map(game_common.Map):
 
     def __setitem__(self, yx, c):
         pos_i = self.get_position_index(yx)
-        self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
+        if type(c) == str:
+            self.terrain = self.terrain[:pos_i] + c + self.terrain[pos_i + 1:]
+        else:
+            self.terrain[pos_i] = c
 
     def __iter__(self):
         """Iterate over YX position coordinates."""
@@ -19,11 +23,20 @@ class Map(game_common.Map):
             for x in range(self.size[1]):
                 yield [y, x]
 
+    @property
+    def geometry(self):
+        return self.__class__.__name__[3:]
+
     def lines(self):
         width = self.size[1]
         for y in range(self.size[0]):
             yield (y, self.terrain[y * width:(y + 1) * width])
 
+    def get_fov_map(self, yx):
+        fov_class_name = 'Fov' + self.__class__.__name__
+        fov_class = globals()[fov_class_name]
+        return fov_class(self, yx)
+
     # The following is used nowhere, so not implemented.
     #def items(self):
     #    for y in range(self.size[0]):
@@ -61,46 +74,76 @@ class Map(game_common.Map):
 
 class MapHex(Map):
 
-    def are_neighbors(self, pos_1, pos_2):
-        if pos_1[0] == pos_2[0] and abs(pos_1[1] - pos_2[1]) <= 1:
-            return True
-        elif abs(pos_1[0] - pos_2[0]) == 1:
-            if pos_1[0] % 2 == 0:
-                if pos_2[1] in (pos_1[1], pos_1[1] - 1):
-                    return True
-            elif pos_2[1] in (pos_1[1], pos_1[1] + 1):
-                return True
-        return False
+    # The following is used nowhere, so not implemented.
+    #def are_neighbors(self, pos_1, pos_2):
+    #    if pos_1[0] == pos_2[0] and abs(pos_1[1] - pos_2[1]) <= 1:
+    #        return True
+    #    elif abs(pos_1[0] - pos_2[0]) == 1:
+    #        if pos_1[0] % 2 == 0:
+    #            if pos_2[1] in (pos_1[1], pos_1[1] - 1):
+    #                return True
+    #        elif pos_2[1] in (pos_1[1], pos_1[1] + 1):
+    #            return True
+    #    return False
 
     def move_UPLEFT(self, start_pos):
-        if start_pos[0] % 2 == 0:
+        if start_pos[0] % 2 == 1:
             return [start_pos[0] - 1, start_pos[1] - 1]
         else:
             return [start_pos[0] - 1, start_pos[1]]
 
     def move_UPRIGHT(self, start_pos):
-        if start_pos[0] % 2 == 0:
+        if start_pos[0] % 2 == 1:
             return [start_pos[0] - 1, start_pos[1]]
         else:
             return [start_pos[0] - 1, start_pos[1] + 1]
 
     def move_DOWNLEFT(self, start_pos):
-        if start_pos[0] % 2 == 0:
-            return [start_pos[0] + 1, start_pos[1] - 1]
+        if start_pos[0] % 2 == 1:
+             return [start_pos[0] + 1, start_pos[1] - 1]
         else:
-            return [start_pos[0] + 1, start_pos[1]]
+               return [start_pos[0] + 1, start_pos[1]]
 
     def move_DOWNRIGHT(self, start_pos):
-        if start_pos[0] % 2 == 0:
+        if start_pos[0] % 2 == 1:
             return [start_pos[0] + 1, start_pos[1]]
         else:
             return [start_pos[0] + 1, start_pos[1] + 1]
 
+    def get_neighbors(self, pos):
+        # DOWNLEFT, DOWNRIGHT, LEFT, RIGHT, UPLEFT, UPRIGHT (alphabetically)
+        neighbors = [None, None, None, None, None, None]  # e, d, c, x, s, w
+        if pos[1] > 0:
+            neighbors[2] = [pos[0], pos[1] - 1]
+        if pos[1] < self.size[1] - 1:
+            neighbors[3] = [pos[0], pos[1] + 1]
+        # x, c, s, d, w, e  # 3->0, 2->1, 5->4, 0->5
+        if pos[0] % 2 == 1:
+            if pos[0] > 0 and pos[1] > 0:
+                neighbors[4] = [pos[0] - 1, pos[1] - 1]
+            if pos[0] < self.size[0] - 1 and pos[1] > 0:
+                neighbors[0] = [pos[0] + 1, pos[1] - 1]
+            if pos[0] > 0:
+                neighbors[5] = [pos[0] - 1, pos[1]]
+            if pos[0] < self.size[0] - 1:
+                neighbors[1] = [pos[0] + 1, pos[1]]
+        else:
+            if pos[0] > 0 and pos[1] < self.size[1] - 1:
+                neighbors[5] = [pos[0] - 1, pos[1] + 1]
+            if pos[0] < self.size[0] - 1 and pos[1] < self.size[1] - 1:
+                neighbors[1] = [pos[0] + 1, pos[1] + 1]
+            if pos[0] > 0:
+                neighbors[4] = [pos[0] - 1, pos[1]]
+            if pos[0] < self.size[0] - 1:
+                neighbors[0] = [pos[0] + 1, pos[1]]
+        return neighbors
+
 
 class MapSquare(Map):
 
-    def are_neighbors(self, pos_1, pos_2):
-        return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1)
+    # The following is used nowhere, so not implemented.
+    #def are_neighbors(self, pos_1, pos_2):
+    #    return abs(pos_1[0] - pos_2[0]) <= 1 and abs(pos_1[1] - pos_2[1] <= 1)
 
     def move_UP(self, start_pos):
         return [start_pos[0] - 1, start_pos[1]]
@@ -108,6 +151,145 @@ class MapSquare(Map):
     def move_DOWN(self, start_pos):
         return [start_pos[0] + 1, start_pos[1]]
 
+    def get_neighbors(self, pos):
+        # DOWN, LEFT, RIGHT, UP  (alphabetically)
+        neighbors = [None, None, None, None]
+        if pos[0] > 0:
+            neighbors[3] = [pos[0] - 1, pos[1]]
+        if pos[1] > 0:
+            neighbors[1] = [pos[0], pos[1] - 1]
+        if pos[0] < self.size[0] - 1:
+            neighbors[0] = [pos[0] + 1, pos[1]]
+        if pos[1] < self.size[1] - 1:
+            neighbors[2] = [pos[0], pos[1] + 1]
+        return neighbors
+
+
+class FovMap:
+
+    def __init__(self, source_map, yx):
+        self.source_map = source_map
+        self.size = self.source_map.size
+        self.terrain = '?' * self.size_i
+        self[yx] = '.'
+        self.shadow_cones = []
+        self.circle_out(yx, self.shadow_process_hex)
+
+    def shadow_process_hex(self, yx, distance_to_center, dir_i, dir_progress):
+        # Possible optimization: If no shadow_cones yet and self[yx] == '.',
+        # skip all.
+        CIRCLE = 360  # Since we'll float anyways, number is actually arbitrary.
+
+        def correct_arm(arm):
+            if arm < 0:
+                arm += CIRCLE
+            return arm
+
+        def in_shadow_cone(new_cone):
+            for old_cone in self.shadow_cones:
+                if old_cone[0] >= new_cone[0] and \
+                    new_cone[1] >= old_cone[1]:
+                    #print('DEBUG shadowed by:', old_cone)
+                    return True
+                # We might want to also shade hexes whose middle arm is inside a
+                # shadow cone for a darker FOV. Note that we then could not for
+                # optimization purposes rely anymore on the assumption that a
+                # shaded hex cannot add growth to existing shadow cones.
+            return False
+
+        def merge_cone(new_cone):
+            for old_cone in self.shadow_cones:
+                if new_cone[0] > old_cone[0] and \
+                    (new_cone[1] < old_cone[0] or
+                     math.isclose(new_cone[1], old_cone[0])):
+                    #print('DEBUG merging to', old_cone)
+                    old_cone[0] = new_cone[0]
+                    #print('DEBUG merged cone:', old_cone)
+                    return True
+                if new_cone[1] < old_cone[1] and \
+                    (new_cone[0] > old_cone[1] or
+                     math.isclose(new_cone[0], old_cone[1])):
+                    #print('DEBUG merging to', old_cone)
+                    old_cone[1] = new_cone[1]
+                    #print('DEBUG merged cone:', old_cone)
+                    return True
+            return False
+
+        def eval_cone(cone):
+            #print('DEBUG CONE', cone, '(', step_size, distance_to_center, number_steps, ')')
+            if in_shadow_cone(cone):
+                return
+            self[yx] = '.'
+            if self.source_map[yx] != '.':
+                #print('DEBUG throws shadow', cone)
+                unmerged = True
+                while merge_cone(cone):
+                    unmerged = False
+                if unmerged:
+                    self.shadow_cones += [cone]
+
+        #print('DEBUG', yx)
+        step_size = (CIRCLE/len(self.circle_out_directions)) / distance_to_center
+        number_steps = dir_i * distance_to_center + dir_progress
+        left_arm = correct_arm(-(step_size/2) - step_size*number_steps)
+        right_arm = correct_arm(left_arm - step_size)
+        # Optimization potential: left cone could be derived from previous
+        # right cone. Better even: Precalculate all cones.
+        if right_arm > left_arm:
+            eval_cone([left_arm, 0])
+            eval_cone([CIRCLE, right_arm])
+        else:
+            eval_cone([left_arm, right_arm])
+
+    def basic_circle_out_move(self, pos, direction):
+        """Move position pos into direction. Return whether still in map."""
+        mover = getattr(self, 'move_' + direction)
+        pos[:] = mover(pos)
+        if pos[0] < 0 or pos[1] < 0 or \
+            pos[0] >= self.size[0] or pos[1] >= self.size[1]:
+            return False
+        return True
+
+    def circle_out(self, yx, f):
+        # Optimization potential: Precalculate movement positions. (How to check
+        # circle_in_map then?)
+        # Optimization potential: Precalculate what hexes are shaded by what hex
+        # and skip evaluation of already shaded hexes. (This only works if hex
+        # shading implies they completely lie in existing shades; otherwise we
+        # would lose shade growth through hexes at shade borders.)
+
+        # TODO: Start circling only in earliest obstacle distance.
+        circle_in_map = True
+        distance = 1
+        yx = yx[:]
+        #print('DEBUG CIRCLE_OUT', yx)
+        while circle_in_map:
+            circle_in_map = False
+            self.basic_circle_out_move(yx, 'RIGHT')
+            for dir_i in range(len(self.circle_out_directions)):
+                for dir_progress in range(distance):
+                    direction = self.circle_out_directions[dir_i]
+                    if self.circle_out_move(yx, direction):
+                        f(yx, distance, dir_i, dir_progress)
+                        circle_in_map = True
+            distance += 1
+
+
+class FovMapHex(FovMap, MapHex):
+    circle_out_directions = ('DOWNLEFT', 'LEFT', 'UPLEFT',
+                             'UPRIGHT', 'RIGHT', 'DOWNRIGHT')
+
+    def circle_out_move(self, yx, direction):
+        return self.basic_circle_out_move(yx, direction)
+
+
+class FovMapSquare(FovMap, MapSquare):
+    circle_out_directions = (('DOWN', 'LEFT'), ('LEFT', 'UP'),
+                             ('UP', 'RIGHT'), ('RIGHT', 'DOWN'))
+
+    def circle_out_move(self, yx, direction):
+        self.basic_circle_out_move(yx, direction[0])
+        return self.basic_circle_out_move(yx, direction[1])
+
 
-def get_map_class(geometry):
-    return globals()['Map' + geometry]
+map_manager = game_common.MapManager((MapHex, MapSquare))